7,566 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Multi-robot team formation control in the GUARDIANS project

    Get PDF
    Purpose The GUARDIANS multi-robot team is to be deployed in a large warehouse in smoke. The team is to assist firefighters search the warehouse in the event or danger of a fire. The large dimensions of the environment together with development of smoke which drastically reduces visibility, represent major challenges for search and rescue operations. The GUARDIANS robots guide and accompany the firefighters on site whilst indicating possible obstacles and the locations of danger and maintaining communications links. Design/methodology/approach In order to fulfill the aforementioned tasks the robots need to exhibit certain behaviours. Among the basic behaviours are capabilities to stay together as a group, that is, generate a formation and navigate while keeping this formation. The control model used to generate these behaviours is based on the so-called social potential field framework, which we adapt to the specific tasks required for the GUARDIANS scenario. All tasks can be achieved without central control, and some of the behaviours can be performed without explicit communication between the robots. Findings The GUARDIANS environment requires flexible formations of the robot team: the formation has to adapt itself to the circumstances. Thus the application has forced us to redefine the concept of a formation. Using the graph-theoretic terminology, we can say that a formation may be stretched out as a path or be compact as a star or wheel. We have implemented the developed behaviours in simulation environments as well as on real ERA-MOBI robots commonly referred to as Erratics. We discuss advantages and shortcomings of our model, based on the simulations as well as on the implementation with a team of Erratics.</p

    Human-robot teamwork: a knowledge-based solution

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresTeams of humans and robots pose new challenges to the teamwork field. This stems from the fact that robots and humans have significantly different perceptual, reasoning, communication and actuation capabilities. This dissertation contributes to solving this problem by proposing a knowledge-based multi-agent system to support design and execution of stereotyped (i.e. recurring) human-robot teamwork. The cooperative workflow formalism has been selected to specify team plans, and adapted to allow activities to share structured data, even during their execution. This novel functionality enables tightly coupled interactions among team members. Rather than focusing on automatic teamwork planning, this dissertation proposes a complementary and intuitive knowledge-based solution for fast deployment and adaptation of small scale human-robot teams. In addition, the system has been designed in order to improve task awareness of each mission participant, and of the human overall mission awareness. A set of empirical results obtained from simulated and real missions proved the concept and the reusability of such a system. Practical results showed that this approach used is an effective solution for small scale teams in stereotyped human-robot teamwork

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Cooperative and Multimodal Capabilities Enhancement in the CERNTAURO Human–Robot Interface for Hazardous and Underwater Scenarios

    Get PDF
    The use of remote robotic systems for inspection and maintenance in hazardous environments is a priority for all tasks potentially dangerous for humans. However, currently available robotic systems lack that level of usability which would allow inexperienced operators to accomplish complex tasks. Moreover, the task’s complexity increases drastically when a single operator is required to control multiple remote agents (for example, when picking up and transporting big objects). In this paper, a system allowing an operator to prepare and configure cooperative behaviours for multiple remote agents is presented. The system is part of a human–robot interface that was designed at CERN, the European Center for Nuclear Research, to perform remote interventions in its particle accelerator complex, as part of the CERNTAURO project. In this paper, the modalities of interaction with the remote robots are presented in detail. The multimodal user interface enables the user to activate assisted cooperative behaviours according to a mission plan. The multi-robot interface has been validated at CERN in its Large Hadron Collider (LHC) mockup using a team of two mobile robotic platforms, each one equipped with a robotic manipulator. Moreover, great similarities were identified between the CERNTAURO and the TWINBOT projects, which aim to create usable robotic systems for underwater manipulations. Therefore, the cooperative behaviours were validated within a multi-robot pipe transport scenario in a simulated underwater environment, experimenting more advanced vision techniques. The cooperative teleoperation can be coupled with additional assisted tools such as vision-based tracking and grasping determination of metallic objects, and communication protocols design. The results show that the cooperative behaviours enable a single user to face a robotic intervention with more than one robot in a safer way

    An overview of robotics and autonomous systems for harsh environments

    Get PDF
    Across a wide range of industries and applications, robotics and autonomous systems can fulfil the crucial and challenging tasks such as inspection, exploration, monitoring, drilling, sampling and mapping in areas of scientific discovery, disaster prevention, human rescue and infrastructure management, etc. However, in many situations, the associated environment is either too dangerous or inaccessible to humans. Hence, a wide range of robots have been developed and deployed to replace or aid humans in these activities. A look at these harsh environment applications of robotics demonstrate the diversity of technologies developed. This paper reviews some key application areas of robotics that involve interactions with harsh environments (such as search and rescue, space exploration, and deep-sea operations), gives an overview of the developed technologies and provides a discussion of the key trends and future directions common to many of these areas

    Duckietown: An Innovative Way to Teach Autonomy

    Get PDF
    Teaching robotics is challenging because it is a multidisciplinary, rapidly evolving and experimental discipline that integrates cutting-edge hardware and software. This paper describes the course design and first implementation of Duckietown, a vehicle autonomy class that experiments with teaching innovations in addition to leveraging modern educational theory for improving student learning. We provide a robot to every student, thanks to a minimalist platform design, to maximize active learning; and introduce a role-play aspect to increase team spirit, by modeling the entire class as a fictional start-up (Duckietown Engineering Co.). The course formulation leverages backward design by formalizing intended learning outcomes (ILOs) enabling students to appreciate the challenges of: (a) heterogeneous disciplines converging in the design of a minimal self-driving car, (b) integrating subsystems to create complex system behaviors, and (c) allocating constrained computational resources. Students learn how to assemble, program, test and operate a self-driving car (Duckiebot) in a model urban environment (Duckietown), as well as how to implement and document new features in the system. Traditional course assessment tools are complemented by a full scale demonstration to the general public. The “duckie” theme was chosen to give a gender-neutral, friendly identity to the robots so as to improve student involvement and outreach possibilities. All of the teaching materials and code is released online in the hope that other institutions will adopt the platform and continue to evolve and improve it, so to keep pace with the fast evolution of the field.National Science Foundation (U.S.) (Award IIS #1318392)National Science Foundation (U.S.) (Award #1405259
    • …
    corecore