97 research outputs found

    Lightweight Adaptation of Classifiers to Users and Contexts: Trends of the Emerging Domain

    Get PDF
    Intelligent computer applications need to adapt their behaviour to contexts and users, but conventional classifier adaptation methods require long data collection and/or training times. Therefore classifier adaptation is often performed as follows: at design time application developers define typical usage contexts and provide reasoning models for each of these contexts, and then at runtime an appropriate model is selected from available ones. Typically, definition of usage contexts and reasoning models heavily relies on domain knowledge. However, in practice many applications are used in so diverse situations that no developer can predict them all and collect for each situation adequate training and test databases. Such applications have to adapt to a new user or unknown context at runtime just from interaction with the user, preferably in fairly lightweight ways, that is, requiring limited user effort to collect training data and limited time of performing the adaptation. This paper analyses adaptation trends in several emerging domains and outlines promising ideas, proposed for making multimodal classifiers user-specific and context-specific without significant user efforts, detailed domain knowledge, and/or complete retraining of the classifiers. Based on this analysis, this paper identifies important application characteristics and presents guidelines to consider these characteristics in adaptation design

    A Comprehensive Review on the Relevance Feedback in Visual Information Retrieval

    Get PDF
    Abstract-Visual information retrieval in images and video has been developing rapidly in our daily life and is an important research field in content-based information indexing and retrieval, automatic annotation and structuring of images. Visual information system can make the use of relevance feedback so that the user progressively refines the search result by marking images in the result as relevant , not relevant or neutral to the search query and then repeating the search with the new information. With a comprehensive review as the main portion, this paper also suggested some novel solutions and perspectives throughout the discussion. Introduce the concept of Negative bootstrap, opens up interesting avenues for future research. Keywords-Bootstrapping, CBIR (Content Based Image Retrieval), Relevance feedback VIR (Visual Information Retrieval). I. INTRODUCTION There has been a renewed spurt of research activity in Visual Information Retrieval. Basically two kinds of information are associated with a visual object (image or video): information about the object, called its metadata, and information contained within the object, called visual features. Metadata is alphanumeric and generally expressible as a schema of a relational or object-oriented database. Visual features are derived through computational processes typically image processing, computer vision, and computational geometric routines executed on the visual object. The simplest visual features that can be computed are based on pixel values of raw data, and several early image database systems [1] used pixels as the basis of their data models. In many specific applications, the process of visual feature extraction is limited by the availability of fast, implementable techniques in image processing and computer vision II. RELATED WORK Initially developed in document retrieval (Salton 1989), relevance feedback was transformed and introduced into content-based multimedia retrieval, mainly content-based image retrieval CBIR)[3]

    Learning on relevance feedback in content-based image retrieval.

    Get PDF
    Hoi, Chu-Hong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 89-103).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Content-based Image Retrieval --- p.1Chapter 1.2 --- Relevance Feedback --- p.3Chapter 1.3 --- Contributions --- p.4Chapter 1.4 --- Organization of This Work --- p.6Chapter 2 --- Background --- p.8Chapter 2.1 --- Relevance Feedback --- p.8Chapter 2.1.1 --- Heuristic Weighting Methods --- p.9Chapter 2.1.2 --- Optimization Formulations --- p.10Chapter 2.1.3 --- Various Machine Learning Techniques --- p.11Chapter 2.2 --- Support Vector Machines --- p.12Chapter 2.2.1 --- Setting of the Learning Problem --- p.12Chapter 2.2.2 --- Optimal Separating Hyperplane --- p.13Chapter 2.2.3 --- Soft-Margin Support Vector Machine --- p.15Chapter 2.2.4 --- One-Class Support Vector Machine --- p.16Chapter 3 --- Relevance Feedback with Biased SVM --- p.18Chapter 3.1 --- Introduction --- p.18Chapter 3.2 --- Biased Support Vector Machine --- p.19Chapter 3.3 --- Relevance Feedback Using Biased SVM --- p.22Chapter 3.3.1 --- Advantages of BSVM in Relevance Feedback --- p.22Chapter 3.3.2 --- Relevance Feedback Algorithm by BSVM --- p.23Chapter 3.4 --- Experiments --- p.24Chapter 3.4.1 --- Datasets --- p.24Chapter 3.4.2 --- Image Representation --- p.25Chapter 3.4.3 --- Experimental Results --- p.26Chapter 3.5 --- Discussions --- p.29Chapter 3.6 --- Summary --- p.30Chapter 4 --- Optimizing Learning with SVM Constraint --- p.31Chapter 4.1 --- Introduction --- p.31Chapter 4.2 --- Related Work and Motivation --- p.33Chapter 4.3 --- Optimizing Learning with SVM Constraint --- p.35Chapter 4.3.1 --- Problem Formulation and Notations --- p.35Chapter 4.3.2 --- Learning boundaries with SVM --- p.35Chapter 4.3.3 --- OPL for the Optimal Distance Function --- p.38Chapter 4.3.4 --- Overall Similarity Measure with OPL and SVM --- p.40Chapter 4.4 --- Experiments --- p.41Chapter 4.4.1 --- Datasets --- p.41Chapter 4.4.2 --- Image Representation --- p.42Chapter 4.4.3 --- Performance Evaluation --- p.43Chapter 4.4.4 --- Complexity and Time Cost Evaluation --- p.45Chapter 4.5 --- Discussions --- p.47Chapter 4.6 --- Summary --- p.48Chapter 5 --- Group-based Relevance Feedback --- p.49Chapter 5.1 --- Introduction --- p.49Chapter 5.2 --- SVM Ensembles --- p.50Chapter 5.3 --- Group-based Relevance Feedback Using SVM Ensembles --- p.51Chapter 5.3.1 --- (x+l)-class Assumption --- p.51Chapter 5.3.2 --- Proposed Architecture --- p.52Chapter 5.3.3 --- Strategy for SVM Combination and Group Ag- gregation --- p.52Chapter 5.4 --- Experiments --- p.54Chapter 5.4.1 --- Experimental Implementation --- p.54Chapter 5.4.2 --- Performance Evaluation --- p.55Chapter 5.5 --- Discussions --- p.56Chapter 5.6 --- Summary --- p.57Chapter 6 --- Log-based Relevance Feedback --- p.58Chapter 6.1 --- Introduction --- p.58Chapter 6.2 --- Related Work and Motivation --- p.60Chapter 6.3 --- Log-based Relevance Feedback Using SLSVM --- p.61Chapter 6.3.1 --- Problem Statement --- p.61Chapter 6.3.2 --- Soft Label Support Vector Machine --- p.62Chapter 6.3.3 --- LRF Algorithm by SLSVM --- p.64Chapter 6.4 --- Experimental Results --- p.66Chapter 6.4.1 --- Datasets --- p.66Chapter 6.4.2 --- Image Representation --- p.66Chapter 6.4.3 --- Experimental Setup --- p.67Chapter 6.4.4 --- Performance Comparison --- p.68Chapter 6.5 --- Discussions --- p.73Chapter 6.6 --- Summary --- p.75Chapter 7 --- Application: Web Image Learning --- p.76Chapter 7.1 --- Introduction --- p.76Chapter 7.2 --- A Learning Scheme for Searching Semantic Concepts --- p.77Chapter 7.2.1 --- Searching and Clustering Web Images --- p.78Chapter 7.2.2 --- Learning Semantic Concepts with Relevance Feed- back --- p.73Chapter 7.3 --- Experimental Results --- p.79Chapter 7.3.1 --- Dataset and Features --- p.79Chapter 7.3.2 --- Performance Evaluation --- p.80Chapter 7.4 --- Discussions --- p.82Chapter 7.5 --- Summary --- p.82Chapter 8 --- Conclusions and Future Work --- p.84Chapter 8.1 --- Conclusions --- p.84Chapter 8.2 --- Future Work --- p.85Chapter A --- List of Publications --- p.87Bibliography --- p.10

    Learning Adaptive Representations for Image Retrieval and Recognition

    Get PDF
    Content-based image retrieval is a core problem in computer vision. It has a wide range of application such as object and place recognition, digital library search, organizing image collections, and 3D reconstruction. However, robust and accurate image retrieval from a large-scale image collection still remains an open problem. For particular instance retrieval, challenges come not only from photometric and geometric changes between the query and the database images, but also from severe visual overlap with irrelevant images. On the other hand, large intra-class variation and inter-class similarity between semantic categories represents a major obstacle in semantic image retrieval and recognition. This dissertation explores learning image representations that adaptively focus on specific image content to tackle these challenges. For this purpose, three kinds of image contexts for discriminating relevant and irrelevant image content are exploited: (1) local image context, (2) semi-global image context, and (3) global image context. Novel models for learning adaptive image representations based on each context are introduced. Moreover, as a byproduct of training the proposed models, the underlying task-relevant contexts are automatically revealed from the data in a self-supervised manner. These include data-driven notion of good local mid-level features, task-relevant semi-global contexts with rich high-level information, and the hierarchy of images. Experimental evaluation illustrates the superiority of the proposed methods in the applications of place recognition, scene categorization, and particular object retrieval.Doctor of Philosoph

    Intelligent Malware Detection Using File-to-file Relations and Enhancing its Security against Adversarial Attacks

    Get PDF
    With computing devices and the Internet being indispensable in people\u27s everyday life, malware has posed serious threats to their security, making its detection of utmost concern. To protect legitimate users from the evolving malware attacks, machine learning-based systems have been successfully deployed and offer unparalleled flexibility in automatic malware detection. In most of these systems, resting on the analysis of different content-based features either statically or dynamically extracted from the file samples, various kinds of classifiers are constructed to detect malware. However, besides content-based features, file-to-file relations, such as file co-existence, can provide valuable information in malware detection and make evasion harder. To better understand the properties of file-to-file relations, we construct the file co-existence graph. Resting on the constructed graph, we investigate the semantic relatedness among files, and leverage graph inference, active learning and graph representation learning for malware detection. Comprehensive experimental results on the real sample collections from Comodo Cloud Security Center demonstrate the effectiveness of our proposed learning paradigms. As machine learning-based detection systems become more widely deployed, the incentive for defeating them increases. Therefore, we go further insight into the arms race between adversarial malware attack and defense, and aim to enhance the security of machine learning-based malware detection systems. In particular, we first explore the adversarial attacks under different scenarios (i.e., different levels of knowledge the attackers might have about the targeted learning system), and define a general attack strategy to thoroughly assess the adversarial behaviors. Then, considering different skills and capabilities of the attackers, we propose the corresponding secure-learning paradigms to counter the adversarial attacks and enhance the security of the learning systems while not compromising the detection accuracy. We conduct a series of comprehensive experimental studies based on the real sample collections from Comodo Cloud Security Center and the promising results demonstrate the effectiveness of our proposed secure-learning models, which can be readily applied to other detection tasks
    • …
    corecore