76 research outputs found

    Capturing and Reconstructing the Appearance of Complex {3D} Scenes

    No full text
    In this thesis, we present our research on new acquisition methods for reflectance properties of real-world objects. Specifically, we first show a method for acquiring spatially varying densities in volumes of translucent, gaseous material with just a single image. This makes the method applicable to constantly changing phenomena like smoke without the use of high-speed camera equipment. Furthermore, we investigated how two well known techniques -- synthetic aperture confocal imaging and algorithmic descattering -- can be combined to help looking through a translucent medium like fog or murky water. We show that the depth at which we can still see an object embedded in the scattering medium is increased. In a related publication, we show how polarization and descattering based on phase-shifting can be combined for efficient 3D~scanning of translucent objects. Normally, subsurface scattering hinders the range estimation by offsetting the peak intensity beneath the surface away from the point of incidence. With our method, the subsurface scattering is reduced to a minimum and therefore reliable 3D~scanning is made possible. Finally, we present a system which recovers surface geometry, reflectance properties of opaque objects, and prevailing lighting conditions at the time of image capture from just a small number of input photographs. While there exist previous approaches to recover reflectance properties, our system is the first to work on images taken under almost arbitrary, changing lighting conditions. This enables us to use images we took from a community photo collection website

    Hemispherical confocal imaging using turtleback reflector

    Get PDF
    We propose a new imaging method called hemispherical confocal imaging to clearly visualize a particular depth in a 3-D scene. The key optical component is a turtleback reflector which is a specially designed polyhedral mirror. By combining the turtleback reflector with a coaxial pair of a camera and a projector, many virtual cameras and projectors are produced on a hemisphere with uniform density to synthesize a hemispherical aperture. In such an optical device, high frequency illumination can be focused at a particular depth in the scene to visualize only the depth with descattering. Then, the observed views are factorized into masking, attenuation, and texture terms to enhance visualization when obstacles are present. Experiments using a prototype system show that only the particular depth is effectively illuminated and hazes by scattering and attenuation can be recovered even when obstacles exist.Microsoft ResearchJapan Society for the Promotion of Science (Grants-in-Aid For Scientific Research 21680017)Japan Society for the Promotion of Science (Grants-in-Aid For Scientific Research 21650038

    New 3D scanning techniques for complex scenes

    Get PDF
    This thesis presents new 3D scanning methods for complex scenes, such as surfaces with fine-scale geometric details, translucent objects, low-albedo objects, glossy objects, scenes with interreflection, and discontinuous scenes. Starting from the observation that specular reflection is a reliable visual cue for surface mesostructure perception, we propose a progressive acquisition system that captures a dense specularity field as the only information for mesostructure reconstruction. Our method can efficiently recover surfaces with fine-scale geometric details from complex real-world objects. Translucent objects pose a difficult problem for traditional optical-based 3D scanning techniques. We analyze and compare two descattering methods, phaseshifting and polarization, and further present several phase-shifting and polarization based methods for high quality 3D scanning of translucent objects. We introduce the concept of modulation based separation, where a high frequency signal is multiplied on top of another signal. The modulated signal inherits the separation properties of the high frequency signal and allows us to remove artifacts due to global illumination. Thismethod can be used for efficient 3D scanning of scenes with significant subsurface scattering and interreflections.Diese Dissertation präsentiert neuartige Verfahren für die 3D-Digitalisierung komplexer Szenen, wie z.B. Oberflächen mit sehr feinen Strukturen, durchscheinende Objekte, Gegenstände mit geringem Albedo, glänzende Objekte, Szenen mit Lichtinterreflektionen und unzusammenhängende Szenen. Ausgehend von der Beobachtung, daß die spekulare Reflektion ein zuverlässiger, visueller Hinweis für die Mesostruktur einer Oberfläche ist, stellen wir ein progressives Meßsystem vor, um Spekularitätsfelder zu messen. Aus diesen Feldern kann anschließend die Mesostruktur rekonstruiert werden. Mit unserer Methode können Oberflächen mit sehr feinen Strukturen von komplexen, realen Objekten effizient aufgenommen werden. Durchscheinende Objekte stellen ein großes Problem für traditionelle, optischbasierte 3D-Rekonstruktionsmethoden dar. Wir analysieren und vergleichen zwei verschiedene Methoden zum Eliminieren von Lichtstreuung (Descattering): Phasenverschiebung und Polarisation. Weiterhin präsentieren wir mehrere hochqualitative 3D-Rekonstruktionsmethoden für durchscheinende Objekte, die auf Phasenverschiebung und Polarisation basieren. Außerdem führen wir das Konzept der modulationsbasierten Signaltrennung ein. Hierzu wird ein hochfrequentes Signal zu einem anderes Signal multipliziert. Das so modulierte Signal erhält damit die separierenden Eigenschaften des hochfrequenten Signals. Dies erlaubt unsMeßartefakte aufgrund von globalen Beleuchtungseffekten zu vermeiden. Dieses Verfahren kann zum effizienten 3DScannen von Szenen mit durchscheinden Objekten und Interreflektionen benutzt werden

    Light Transport Refocusing for Unknown Scattering Medium

    Get PDF
    2014 22nd International Conference on Pattern Recognition,Stockholm, Sweden,24-28 Aug. 2014In this paper we propose a new light transport refocusing method for depth estimation as well as for investigation inside scattering media with unknown scattering properties. Propagated visible light rays through scattering media are utilized in our proposed refocusing method. We use 2D light source to illuminate the scattering media and 2D image sensor for capturing transported rays. The proposed method that uses 4D light transport can clearly visualize shallow depth, as well as deep depth plane of the medium. We apply our light transport refocusing method for depth estimation using conventional depth-from-focus method and for clear visualization by descattering the light rays passing through the medium. To evaluate the effectiveness we have done experiments using acrylic and milk-water type scattering medium in various optical and geometrical conditions. Finally, we show up the results of depth estimation and clear visualization, as well as with numeric evaluation

    Adaptive polarization-difference transient imaging for depth estimation in scattering media

    Get PDF
    Introducing polarization into transient imaging improves depth estimation in participating media, by discriminating reflective from scattered light transport and calculating depth from the former component only. Previous works have leveraged this approach under the assumption of uniform polarization properties. However, the orientation and intensity of polarization inside scattering media is nonuniform, both in the spatial and temporal domains. As a result of this simplifying assumption, the accuracy of the estimated depth worsens significantly as the optical thickness of the medium increases. In this Letter, we introduce a novel adaptive polarization-difference method for transient imaging, taking into account the nonuniform nature of polarization in scattering media. Our results demonstrate a superior performance for impulse-based transient imaging over previous unpolarized or uniform approaches
    corecore