170 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    A Comprehensive Approach to WSN-Based ITS Applications: A Survey

    Get PDF
    In order to perform sensing tasks, most current Intelligent Transportation Systems (ITS) rely on expensive sensors, which offer only limited functionality. A more recent trend consists of using Wireless Sensor Networks (WSN) for such purpose, which reduces the required investment and enables the development of new collaborative and intelligent applications that further contribute to improve both driving safety and traffic efficiency. This paper surveys the application of WSNs to such ITS scenarios, tackling the main issues that may arise when developing these systems. The paper is divided into sections which address different matters including vehicle detection and classification as well as the selection of appropriate communication protocols, network architecture, topology and some important design parameters. In addition, in line with the multiplicity of different technologies that take part in ITS, it does not consider WSNs just as stand-alone systems, but also as key components of heterogeneous systems cooperating along with other technologies employed in vehicular scenarios

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Designs for the Quality of Service Support in Low-Energy Wireless Sensor Network Protocols

    Get PDF
    A Wireless Sensor Network (WSN) consists of small, low cost, and low energy sensor nodes that cooperatively monitor physical quantities, control actuators, and perform data processing tasks. A network may consist of thousands of randomly deployed self-configurable nodes that operate autonomously to form a multihop topology. This Thesis focuses on Quality of Service (QoS) in low-energy WSNs that aim at several years operation time with small batteries. As a WSN may include both critical and non-critical control and monitoring applications, QoS is needed to make intelligent, content specific trade-offs between energy and network performance. The main research problem is defining and implementing QoS with constrained energy budget, processing power, communication bandwidth, and data and program memories. The problem is approached via protocol designs and algorithms. These are verified with simulations and with measurements in practical deployments. This Thesis defines QoS for WSNs with quantifiable metrics to allow measuring and managing the network performance. The definition is used as a basis for QoS routing protocol and Medium Access Control (MAC) schemes, comprising dynamic capacity allocation algorithm and QoS support layer. Dynamic capacity allocation is targeted at reservation based MACs, whereas the QoS support layer operates on contention based MACs. Instead of optimizing the protocols for a certain use case, the protocols allow configurable QoS based on application specific requirements. Finally, this Thesis designs sensor self-diagnostics and diagnostics analysis tool for verifying network performance. Compared to the related proposals on in-network sensor diagnostics, the diagnostics also detects performance problems and identifies reasons for the issues thus allowing the correction of problems. The results show that the developed protocols allow a clear trade-off between energy, latency, throughput, and reliability aspects of QoS while incurring a minimal overhead. The feasibility of results for extremely resource constrained WSNs is verified with the practical implementation with a prototype hardware platform having only few Million Instructions Per Second (MIPS) of processing power and less than a hundred kBs data and program memories. The results of this Thesis can be used in the WSN research, development, and implementation in general. The developed QoS definition, protocols, and diagnostics tools can be used separately or adapted to other applications and protocols

    A MAC protocol for quality of service provisioning in adaptive biomedical wireless sensor networks

    Get PDF
    Doctorate program on Electronics and Computer EngineeringNew healthcare solutions are being explored to improve the quality of care and the quality of life of patients, as well as the sustainability and efficiency of the healthcare services. In this context, wireless sensor networks (WSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. Despite the recent advances in the field, the wide adoption of healthcare WSNs is still conditioned by quality of service (QoS) issues, namely at the medium access control (MAC) level. MAC protocols currently available for WSNs are not able to provide the required QoS to healthcare applications in scenarios of medical emergency or intensive medical care. To cover this shortage, the present work introduces a MAC protocol with novel concepts to assure the required QoS regarding the data transmission robustness, packet delivery deadline, bandwidth efficiency, and energy preservation. The proposed MAC protocol provides a new and efficient dynamic reconfiguration mechanism, so that relevant operational parameters may be redefined dynamically in accordance with the patients’ clinical state. The protocol also provides a channel switching mechanism and the capacity of forwarding frames in two-tier network structures. To test the performance of the proposed MAC protocol and compare it with other MAC protocols, a simulation platform was implemented. In order to validate the simulation results, a physical testbed was implemented to replicate the tests and verify the results. Sensor nodes were specifically designed and assembled to implement this physical testbed. New healthcare solutions are being explored to improve the quality of care and the quality of life of patients, as well as the sustainability and efficiency of the healthcare services. In this context, wireless sensor networks (WSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. Despite the recent advances in the field, the wide adoption of healthcare WSNs is still conditioned by quality of service (QoS) issues, namely at the medium access control (MAC) level. MAC protocols currently available for WSNs are not able to provide the required QoS to healthcare applications in scenarios of medical emergency or intensive medical care. To cover this shortage, the present work introduces a MAC protocol with novel concepts to assure the required QoS regarding the data transmission robustness, packet delivery deadline, bandwidth efficiency, and energy preservation. The proposed MAC protocol provides a new and efficient dynamic reconfiguration mechanism, so that relevant operational parameters may be redefined dynamically in accordance with the patients’ clinical state. The protocol also provides a channel switching mechanism and the capacity of forwarding frames in two-tier network structures. To test the performance of the proposed MAC protocol and compare it with other MAC protocols, a simulation platform was implemented. In order to validate the simulation results, a physical testbed was implemented to replicate the tests and verify the results. Sensor nodes were specifically designed and assembled to implement this physical testbed. Preliminary tests using the simulation and physical platforms showed that simulation results diverge significantly from reality, if the performance of the WSN software components is not considered. Therefore, a parametric model was developed to reflect the impact of this aspect on a physical WSN. Simulation tests using the parametric model revealed that the results match satisfactorily those obtained in reality. After validating the simulation platform, comparative tests against IEEE 802.15.4, a prominent standard used in many wireless healthcare systems, showed that the proposed MAC protocol leads to a performance increase regarding diverse QoS metrics, such as packet loss and bandwidth efficiency, as well as scalability, adaptability, and power consumption. In this way, AR-MAC is a valuable contribution to the deployment of wireless e-health technology and related applications.Novas soluções de cuidados de saúde estão a ser exploradas para melhorar a qualidade de tratamento e a qualidade de vida dos pacientes, assim como a sustentabilidade e eficiência dos serviços de cuidado de saúde. Neste contexto, as redes de sensores sem fios (wireless sensor networks - WSN) são uma tecnologia chave para fecharem o ciclo entre os pacientes e os prestadores de cuidados de saúde, uma vez que as WSNs proporcionam não só capacidade sensorial mas também mobilidade e portabilidade, caracteristicas essenciais para a aceitação à larga escala da tecnologia dos cuidados de saúde sem fios. Apesar dos avanços recentes na área, a aceitação genérica das WSNs de cuidados de saúde ainda está condicionada por aspectos relacionados com a qualidade de serviço (quality of service - QoS), nomeadamente ao nível do controlo de acesso ao meio (medium access control - MAC). Os protocolos MAC actualmente disponíveis para WSNs são incapazes de fornecer a QoS desejada pelas aplicações médicas em cenários de emergência ou cuidados médicos intensivos. Para suprimir esta carência, o presente trabalho apresenta um protocolo MAC com novos conceitos a fim de assegurar a QoS respeitante à robustez de transmissão de dados, ao limite temporal da entrega de pacotes, à utilização da largura de banda e à preservação da energia eléctrica. O protocolo MAC proposto dispõe de um novo e eficiente mecanismo de reconfiguração para que os parâmetros operacionais relevantes possam ser redefinidos dinamicamente de acordo com o estado de saúde do paciente. O protocolo também oferece um mecanismo autónomo de comutação de canal, bem como a capacidade de encaminhar pacotes em redes de duas camadas. Para testar o desempenho do protocolo MAC proposto e compará-lo com outros protocolos MAC foi implementada uma plataforma de simulação. A fim de validar os resultados da simulação foi também implementada uma plataforma física para permitir replicar os testes e verificar os resultados. Esta plataforma física inclui nós sensoriais concebidos e construídos de raiz para o efeito. Testes preliminares usando as plataformas de simulação e física mostraram que os resultados de simulação divergem significativamente da realidade, caso o desempenho dos componentes do software presentes nos componentes da WSN não seja considerado. Por conseguinte, desenvolveu-se um modelo paramétrico para reflectir o impacto deste aspecto numa WSN real. Testes de simulação efectuados com o modelo paramétrico apresentaram resultados muito satisfatórios quando comparados com os obtidos na realidade. Uma vez validada a plataforma de simulação, efectuaram-se testes comparativos com a norma IEEE 802.15.4, proeminentemente usada em projectos académicos de cuidados de saúde sem fios. Os resultados mostraram que o protocolo MAC conduz a um desempenho superior no tocante a diversas métricas QoS, tais como perdas de pacotes e utilização de largura de banda, bem como no respeitante à escalabilidade, adaptabilidade e consumo de energia eléctrica. Assim sendo, o protocolo MAC proposto representa um valioso contributo para a concretização efectiva dos cuidados de saúde sem fios e suas aplicações

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    IEEE 802.15.4e: a Survey

    Get PDF
    Several studies have highlighted that the IEEE 802.15.4 standard presents a number of limitations such as low reliability, unbounded packet delays and no protection against interference/fading, that prevent its adoption in applications with stringent requirements in terms of reliability and latency. Recently, the IEEE has released the 802.15.4e amendment that introduces a number of enhancements/modifications to the MAC layer of the original standard in order to overcome such limitations. In this paper we provide a clear and structured overview of all the new 802.15.4e mechanisms. After a general introduction to the 802.15.4e standard, we describe the details of the main 802.15.4e MAC behavior modes, namely Time Slotted Channel Hopping (TSCH), Deterministic and Synchronous Multi-channel Extension (DSME), and Low Latency Deterministic Network (LLDN). For each of them, we provide a detailed description and highlight the main features and possible application domains. Also, we survey the current literature and summarize open research issues

    Cross-layer energy optimisation of routing protocols in wireless sensor networks

    Get PDF
    Recent technological developments in embedded systems have led to the emergence of a new class of networks, known asWireless Sensor Networks (WSNs), where individual nodes cooperate wirelessly with each other with the goal of sensing and interacting with the environment.Many routing protocols have been developed tomeet the unique and challenging characteristics of WSNs (notably very limited power resources to sustain an expected lifetime of perhaps years, and the restricted computation, storage and communication capabilities of nodes that are nonetheless required to support large networks and diverse applications). No standards for routing have been developed yet for WSNs, nor has any protocol gained a dominant position among the research community. Routing has a significant influence on the overall WSN lifetime, and providing an energy efficient routing protocol remains an open problem. This thesis addresses the issue of designing WSN routing methods that feature energy efficiency. A common time reference across nodes is required in mostWSN applications. It is needed, for example, to time-stamp sensor samples and for duty cycling of nodes. Alsomany routing protocols require that nodes communicate according to some predefined schedule. However, independent distribution of the time information, without considering the routing algorithm schedule or network topology may lead to a failure of the synchronisation protocol. This was confirmed empirically, and was shown to result in loss of connectivity. This can be avoided by integrating the synchronisation service into the network layer with a so-called cross-layer approach. This approach introduces interactions between the layers of a conventional layered network stack, so that the routing layer may share information with other layers. I explore whether energy efficiency can be enhanced through the use of cross-layer optimisations and present three novel cross-layer routing algorithms. The first protocol, designed for hierarchical, cluster based networks and called CLEAR (Cross Layer Efficient Architecture for Routing), uses the routing algorithm to distribute time information which can be used for efficient duty cycling of nodes. The second method - called RISS (Routing Integrated Synchronization Service) - integrates time synchronization into the network layer and is designed to work well in flat, non-hierarchical network topologies. The third method - called SCALE (Smart Clustering Adapted LEACH) - addresses the influence of the intra-cluster topology on the energy dissipation of nodes. I also investigate the impact of the hop distance on network lifetime and propose a method of determining the optimal location of the relay node (the node through which data is routed in a two-hop network). I also address the problem of predicting the transition region (the zone separating the region where all packets can be received and that where no data can be received) and I describe a way of preventing the forwarding of packets through relays belonging in this transition region. I implemented and tested the performance of these solutions in simulations and also deployed these routing techniques on sensor nodes using TinyOS. I compared the average power consumption of the nodes and the precision of time synchronization with the corresponding parameters of a number of existing algorithms. All proposed schemes extend the network lifetime and due to their lightweight architecture they are very efficient on WSN nodes with constrained resources. Hence it is recommended that a cross-layer approach should be a feature of any routing algorithm for WSNs

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks
    corecore