32,267 research outputs found

    Lifelong Neural Predictive Coding: Learning Cumulatively Online without Forgetting

    Full text link
    In lifelong learning systems, especially those based on artificial neural networks, one of the biggest obstacles is the severe inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this article, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the immensely popular back-propagation of errors. Grounded in the neurocognitive theory of predictive processing, our model adapts its synapses in a biologically-plausible fashion, while another, complementary neural system rapidly learns to direct and control this cortex-like structure by mimicking the task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting as compared to standard neural models and outperforms a wide swath of previously proposed methods even though it is trained across task datasets in a stream-like fashion. The promising performance of our complementary system on benchmarks, e.g., SplitMNIST, Split Fashion MNIST, and Split NotMNIST, offers evidence that by incorporating mechanisms prominent in real neuronal systems, such as competition, sparse activation patterns, and iterative input processing, a new possibility for tackling the grand challenge of lifelong machine learning opens up.Comment: Key updates including results on standard benchmarks, e.g., split mnist/fmnist/not-mnist. Task selection/basal ganglia model has been integrate

    DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning

    Full text link
    We present DRLViz, a visual analytics interface to interpret the internal memory of an agent (e.g. a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated when the agent moves in an environment and is not trivial to understand due to the number of dimensions, dependencies to past vectors, spatial/temporal correlations, and co-correlation between dimensions. It is often referred to as a black box as only inputs (images) and outputs (actions) are intelligible for humans. Using DRLViz, experts are assisted to interpret decisions using memory reduction interactions, and to investigate the role of parts of the memory when errors have been made (e.g. wrong direction). We report on DRLViz applied in the context of video games simulators (ViZDoom) for a navigation scenario with item gathering tasks. We also report on experts evaluation using DRLViz, and applicability of DRLViz to other scenarios and navigation problems beyond simulation games, as well as its contribution to black box models interpretability and explainability in the field of visual analytics

    STNet: Selective Tuning of Convolutional Networks for Object Localization

    Full text link
    Visual attention modeling has recently gained momentum in developing visual hierarchies provided by Convolutional Neural Networks. Despite recent successes of feedforward processing on the abstraction of concepts form raw images, the inherent nature of feedback processing has remained computationally controversial. Inspired by the computational models of covert visual attention, we propose the Selective Tuning of Convolutional Networks (STNet). It is composed of both streams of Bottom-Up and Top-Down information processing to selectively tune the visual representation of Convolutional networks. We experimentally evaluate the performance of STNet for the weakly-supervised localization task on the ImageNet benchmark dataset. We demonstrate that STNet not only successfully surpasses the state-of-the-art results but also generates attention-driven class hypothesis maps

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Becoming the Expert - Interactive Multi-Class Machine Teaching

    Full text link
    Compared to machines, humans are extremely good at classifying images into categories, especially when they possess prior knowledge of the categories at hand. If this prior information is not available, supervision in the form of teaching images is required. To learn categories more quickly, people should see important and representative images first, followed by less important images later - or not at all. However, image-importance is individual-specific, i.e. a teaching image is important to a student if it changes their overall ability to discriminate between classes. Further, students keep learning, so while image-importance depends on their current knowledge, it also varies with time. In this work we propose an Interactive Machine Teaching algorithm that enables a computer to teach challenging visual concepts to a human. Our adaptive algorithm chooses, online, which labeled images from a teaching set should be shown to the student as they learn. We show that a teaching strategy that probabilistically models the student's ability and progress, based on their correct and incorrect answers, produces better 'experts'. We present results using real human participants across several varied and challenging real-world datasets.Comment: CVPR 201
    • …
    corecore