625 research outputs found

    Membrane dissolution and division in P

    Get PDF
    Membrane systems with dividing and dissolving membranes are known to solve PSPACE problems in polynomial time. However, we give a P upperbound on an important restriction of such systems. In particular we examine systems with dissolution, elementary division and where each membrane initially has at most one child membrane. Even though such systems may create exponentially many membranes, each with di erent contents, we show that their power is upperbounded by PJunta de Andalucía TIC-581Ministerio de Educación y Ciencia TIN2006-1342

    A Computational Complexity Theory in Membrane Computing

    Get PDF
    In this paper, a computational complexity theory within the framework of Membrane Computing is introduced. Polynomial complexity classes associated with di erent models of cell-like and tissue-like membrane systems are de ned and the most relevant results obtained so far are presented. Many attractive characterizations of P 6= NP conjecture within the framework of a bio-inspired and non-conventional computing model are deduced.Ministerio de Educación y Ciencia TIN2006-13425Junta de Andalucía P08–TIC-0420

    Uniformity is weaker than semi-uniformity for some membrane systems

    Get PDF
    We investigate computing models that are presented as families of finite computing devices with a uniformity condition on the entire family. Examples of such models include Boolean circuits, membrane systems, DNA computers, chemical reaction networks and tile assembly systems, and there are many others. However, in such models there are actually two distinct kinds of uniformity condition. The first is the most common and well-understood, where each input length is mapped to a single computing device (e.g. a Boolean circuit) that computes on the finite set of inputs of that length. The second, called semi-uniformity, is where each input is mapped to a computing device for that input (e.g. a circuit with the input encoded as constants). The former notion is well-known and used in Boolean circuit complexity, while the latter notion is frequently found in literature on nature-inspired computation from the past 20 years or so. Are these two notions distinct? For many models it has been found that these notions are in fact the same, in the sense that the choice of uniformity or semi-uniformity leads to characterisations of the same complexity classes. In other related work, we showed that these notions are actually distinct for certain classes of Boolean circuits. Here, we give analogous results for membrane systems by showing that certain classes of uniform membrane systems are strictly weaker than the analogous semi-uniform classes. This solves a known open problem in the theory of membrane systems. We then go on to present results towards characterising the power of these semi-uniform and uniform membrane models in terms of NL and languages reducible to the unary languages in NL, respectively.Comment: 28 pages, 1 figur

    Remarks on the Computational Power of Some Restricted Variants of P Systems with Active Membranes

    Get PDF
    In this paper we consider three restricted variants of P systems with active membranes: (1) P systems using out communication rules only, (2) P systems using elementary membrane division and dissolution rules only, and (3) polarizationless P systems using dissolution and restricted evolution rules only. We show that every problem in P can be solved with uniform families of any of these variants. This, using known results on the upper bound of the computational power of variants (1) and (3) yields new characterizations of the class P. In the case of variant (2) we provide a further characterization of P by giving a semantic restriction on the computations of P systems of this varian

    Multivariate NIR studies of seed-water interaction in Scots Pine Seeds (Pinus sylvestris L.)

    Get PDF
    This thesis describes seed-water interaction using near infrared (NIR) spectroscopy, multivariate regression models and Scots pine seeds. The presented research covers classification of seed viability, prediction of seed moisture content, selection of NIR wavelengths and interpretation of seed-water interaction modelled and analysed by principal component analysis, ordinary least squares (OLS), partial least squares (PLS), bi-orthogonal least squares (BPLS) and genetic algorithms. The potential of using multivariate NIR calibration models for seed classification was demonstrated using filled viable and non-viable seeds that could be separated with an accuracy of 98-99%. It was also shown that multivariate NIR calibration models gave low errors (0.7% and 1.9%) in prediction of seed moisture content for bulk seed and single seeds, respectively, using either NIR reflectance or transmittance spectroscopy. Genetic algorithms selected three to eight wavelength bands in the NIR region and these narrow bands gave about the same prediction of seed moisture content (0.6% and 1.7%) as using the whole NIR interval in the PLS regression models. The selected regions were simulated as NIR filters in OLS regression resulting in predictions of the same quality (0.7 % and 2.1%). This finding opens possibilities to apply NIR sensors in fast and simple spectrometers for the determination of seed moisture content. Near infrared (NIR) radiation interacts with overtones of vibrating bonds in polar molecules. The resulting spectra contain chemical and physical information. This offers good possibilities to measure seed-water interactions, but also to interpret processes within seeds. It is shown that seed-water interaction involves both transitions and changes mainly in covalent bonds of O-H, C-H, C=O and N-H emanating from ongoing physiological processes like seed respiration and protein metabolism. I propose that BPLS analysis that has orthonormal loadings and orthogonal scores giving the same predictions as using conventional PLS regression, should be used as a standard to harmonise the interpretation of NIR spectra

    Modelling Early Transitions Toward Autonomous Protocells

    Get PDF
    This thesis broadly concerns the origins of life problem, pursuing a joint approach that combines general philosophical/conceptual reflection on the problem along with more detailed and formal scientific modelling work oriented in the conceptual perspective developed. The central subject matter addressed is the emergence and maintenance of compartmentalised chemistries as precursors of more complex systems with a proper cellular organization. Whereas an evolutionary conception of life dominates prebiotic chemistry research and overflows into the protocells field, this thesis defends that the 'autonomous systems perspective' of living phenomena is a suitable - arguably the most suitable - conceptual framework to serve as a backdrop for protocell research. The autonomy approach allows a careful and thorough reformulation of the origins of cellular life problem as the problem of how integrated autopoietic chemical organisation, present in all full-fledged cells, originated and developed from more simple far-from-equilibrium chemical aggregate systems.Comment: 205 Pages, 27 Figures, PhD Thesis Defended Feb 201

    Dynamic response of steel monolithic plated structures subjected to localised blast loads

    Get PDF
    This thesis investigates the nonlinear dynamic response of the steel monolithic square plated structures due to localised blast loads, such as those emanating from close-in charges. Such target plates are assumed to be made of novel high strength ARMOX steel material types manufactured by SSAB® as well as conventional mild steel. A detailed review of earlier works in the literature is presented on the experimental, numerical and theoretical methods of analysis to predict the response of beams, circular and quadrangular plates subject to blast and impact loads. The large scatter of data from the above analyses has been cast in dimensionless forms to correlate between the methods of predicting the response. The review concludes that, the choice of material type as well as the intrinsic complexity associated with the load type make the response of the structure inherently different to those of plated elements made of more conventional grade metals. Based on the state-of-the-art Digital Image Correlation experimental testing conducted in the Blast Impact and Survivability Research Unit in University of Cape Town, various proposed numerical models have been validated. These include advanced techniques to model the fluid structure interactions. This led to discerning the parameters that influence the plastic response. Empirical relations in dimensionless form have been proposed which pass through most scattered data from numerical and experimental results. A prompt observation is that assessing the plastic response of the structures to localised blasts necessitates understanding the underlying patterns and laws of plastic response. Such understanding is gained by theoretical methods with idealisations of the material or the structural response. This leads to theoretical studies using the principles of virtual velocities assuming constitutive framework of limit analysis, i.e. rigid, perfectly plastic behaviour. While appreciating the limitations of current theoretical models, a comprehensive approach is undertaken to explore the response of the plates of various boundary conditions, distinguished in terms of their thicknesses, i.e. thick, moderately thick and thin plates. Furthermore, the nonlinear elastic response of the plates has been examined, leading to a unified theoretical solution of elastic-perfectly plastic systems. On the basis of the existing work in the literature, a method to mathematically describe the parameters that characterise the blast load itself and the structure impacted whereupon with a given charge geometry, stand off and material type is presented and validated with numerical models. Based on the dimensionless study, single parameters to predict the rupture impulse has been determined.Open Acces

    Modelling electrooxidation of glycerol and methanol on close-packed transition metal surfaces

    Get PDF
    Burning fossil fuels leads to excess CO2 in the atmosphere, causing global warming, threatening civilisation and ecosystems worldwide. As a step in making the society fossil-independent, we need to replace oil, coal, and gas in the transportation sector with fuels originating from sustainable energy sources. Biodiesel is one such option, from which glycerol is a byproduct. With the help of electrooxidation, glycerol can be used as a feedstock to extract hydrogen gas, which may be used for upgrading biofuels or in proton exchange membrane (PEM) fuel cells. Methanol is a possible fuel in direct methanol fuel cells (DMFCs) and can, moreover, be used as a simple model for glycerol in some respects.The primary focus of this thesis is to study the reaction thermodynamics of glycerol electrooxidation on Au(111) and other close-packed late transition metal surfaces. This provides routes and products that are thermodynamically favourable, information on steps that are difficult to overcome, and at what theoretical limiting potential the reaction becomes spontaneous. Using scaling relations for adsorption energies, these results can be generalised to alloys and other possible electrode materials. We use density functional theory to model the system, and to some extent experimental verification by cyclic voltammetry. Long range dispersion (van der Waals), which have been neglected in computations until recently, is investigated by assessing density van der Waals functionals. This is of particular importance for an inert metal such as gold. Another aspect that has commonly been ignored is solvent effects, which we study for the model system of methanol electrooxidation on Au(111). This includes an implicit model - a continuous dielectric -and an explicit model of water molecules
    corecore