2,112 research outputs found

    Theoretical analysis and experimental validation of a simplified fractional order controller for a magnetic levitation system

    Get PDF
    Fractional order (FO) controllers are among the emerging solutions for increasing closed-loop performance and robustness. However, they have been applied mostly to stable processes. When applied to unstable systems, the tuning technique uses the well-known frequency-domain procedures or complex genetic algorithms. This brief proposes a special type of an FO controller, as well as a novel tuning procedure, which is simple and does not involve any optimization routines. The controller parameters may be determined directly using overshoot requirements and the study of the stability of FO systems. The tuning procedure is given for the general case of a class of unstable systems with pole multiplicity. The advantage of the proposed FO controller consists in the simplicity of the tuning approach. The case study considered in this brief consists in a magnetic levitation system. The experimental results provided show that the designed controller can indeed stabilize the magnetic levitation system, as well as provide robustness to modeling uncertainties and supplementary loading conditions. For comparison purposes, a simple PID controller is also designed to point out the advantages of using the proposed FO controller

    Terminal sliding mode control strategy design for second-order nonlinear system

    Full text link
    This study mainly focuses on the terminal sliding mode control (TSMC) strategy design, including an adaptive terminal sliding mode control (ATSMC) and an exact-estimator-based terminal sliding mode control (ETSMC) for second-order nonlinear dynamical systems. In the ATSMC system, an adaptive bound estimation for the lump uncertainty is proposed to ensure the system stability. On the other hand, an exact estimator is designed for exact estimating system uncertainties to solve the trouble of chattering phenomena caused by a sign function in ATSMC law in despite of the utilization of a fixed value or an adaptive tuning algorithm for the lumped uncertainty bound. The effectiveness of the proposed control schemes can be verified in numerical simulations.<br /

    Super Twisting Sliding Mode Control with Compensated Current Controller Dynamics on Active Magnetic Bearings with Large Air Gap

    Get PDF
    Due to their unique properties, like no mechanical contact and therefore no wear and no lubrication needed, Active Magnetic Bearings (AMBs) have been a dynamic field of research in the past decades. The high non-linearities of AMBs generate many challenges for the control of the otherwise unstable system, thus they need to be addressed to deliver the performance that modern applications require. Integrating the current controller dynamics into the model of a position controller in a cascading control loop helps to improve the performance of the control loop compared to a plain current controlled schema. Further, this nested control loop guarantees the predefined current dynamics of the current controller, tuned according to an industrial criterion. The systems dynamics are modelled and the proposed controller is validated experimentally on a physical test bench. The experimental results show a performant position control with a nested and explicit current controller on an AMB, even with a large air gap and star-connected coils. The trajectory range of the rotor was reduced by 87% to ±20 ”m, compared to a plain current-controlled model. The proposed control strategy lays the foundation for further research, especially concerning sensorless position estimation techniques since these usually have limited bandwidth and benefit from a predefined current dynamic

    Robust Adaptive Cerebellar Model Articulation Controller for 1-DOF Nonlaminated Active Magnetic Bearings

    Get PDF
    This paper presents a robust adaptive cerebellar model articulation controller (RACMAC) for 1-DOF nonlaminated active magnetic bearings (AMBs) to achieve desired positions for the rotor using a robust sliding mode control based. The dynamic model of 1-DOF nonlaminated AMB is introduced in fractional order equations. However, it is challenging to design a controller based on the model\u27s parameters due to undefined components and external disturbances such as eddy current losses in the actuator, external disturbance, variant parameters of the model while operating. In order to tackle the problem, RACMAC, which has a cerebellar model to estimate nonlinear disturbances, is investigated to resolve this problem. Based on this estimation, a robust adaptive controller that approximates the ideal and compensation controllers is calculated. The online parameters of the neural network are adjusted using Lyapunov\u27s stability theory to ensure the stability of system. Simulation results are presented to demonstrate the effectiveness of the proposed controller.The simulation results indicate that the CMAC multiple nonlinear multiple estimators are close to the actual nonlinear disturbance value, and the effectiveness of the proposed RACMAC method compared with the FOPID and SMC controllers has been studied previously

    Control of a magnetically levitated ventricular assist device

    Get PDF
    This work presents theoretical and experimental means for achieving impeller stability in a magnetically levitated left ventricular assist device (LVAD). These types of medical devices are designed to boost the native heart`s ability to pump blood by means of mechanical energy transfer using a rotating impeller. Magnetic suspension of the impeller eliminates bearing friction and reduces blood damage, but it requires active controls that monitor the impeller`s position and speed in order to generate the forces and torques required to regulate its dynamic behavior. To accomplish this goal, this work includes: 1) a dynamic system model derived using energy and momentum conservation 2) dynamic analysis including stability, controllability and observability, and 3) development of two control algorithms: proportional integral derivative and sliding mode control. Experimental validation included component behavior, model accuracy, and the characterization of controller performance using a physiological simulator. The system model proved to be an adequate representation of the system while levitating in air, but additional research is needed to model hydrodynamic and gyroscopic effects. After the prototype`s subcomponents were tested, calibrated and/or modified to fit the control requirements, both control strategies were successful in controlling the rotor as it spun at 6000 rpm pumping 6L/min of water at 80mmHg. A maximum speed of 6500 rpm was achieved with speed control within 5% over most of the operating range. The control platform and many of the methods presented here are continually being used and improved towards the implantation of the device in a human subject in the future

    A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    Get PDF
    This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long-term stability and reliability represent areas of uncertainty for magnetic bearings. Considerable development effort will be required to establish the long-term suitability of these bearings for Stirling space power applications

    Performance Comparison between Sliding Mode Control with PID Sliding Surface and PID Controller for an Electro-hydraulic Positioning System

    Get PDF
    In this paper, the position tracking performance of an electro-hydraulic hydraulic servo (EHS) system using sliding mode control (SMC) with proportional-integral-derivative (PID) sliding surface is presented. The dynamics of the EHS system in modelling process are developed by consider its nonlinearities incorporating a friction model. Then, SMC with PID scheme is derived from the developed dynamics equation and stability of the control system is theoretically proven by Lyapunov theorem. Finally, simulation work is demonstrated and the result shows the proposed controller can achieve better tracking performance compared with conventional PID controller with good accuracy for any desired trajectory

    Optimization of Sliding Mode Control using Particle Swarm Algorithm for an Electro-hydraulic Actuator System

    Get PDF
    The dynamic parts of electro-hydraulic actuator (EHA) system are widely applied in the industrial field for the process that exposed to the motion control. In order to achieve accurate motion produced by these dynamic parts, an appropriate controller will be needed. However, the EHA system is well known to be nonlinear in nature. A great challenge is carried out in the EHA system modelling and the controller development due to its nonlinear characteristic and system complexity. An appropriate controller with proper controller parameters will be needed in order to maintain or enhance the performance of the utilized controller. This paper presents the optimization on the variables of sliding mode control (SMC) by using Particle Swarm Optimization (PSO) algorithm. The control scheme is established from the derived dynamic equation which stability is proven through Lyapunov theorem. From the obtained simulation results, it can be clearly inferred that the SMC controller variables tuning through PSO algorithm performed better compared with the conventional proportionalintegral-derivative (PID) controller

    Rotors on Active Magnetic Bearings: Modeling and Control Techniques

    Get PDF
    In the last decades the deeper and more detailed understanding of rotating machinery dynamic behavior facilitated the study and the design of several devices aiming at friction reduction, vibration damping and control, rotational speed increase and mechanical design optimization. Among these devices a promising technology is represented by active magnetic actuators which found a great spread in rotordynamics and in high precision applications due to (a) the absence of all fatigue and tribology issues motivated by the absence of contact, (b) the small sensitivity to the operating conditions, (c) the wide possibility of tuning even during operation, (d) the predictability of the behavior. This technology can be classified as a typical mechatronic product due to its nature which involves mechanical, electrical and control aspects, merging them in a single system. The attractive potential of active magnetic suspensions motivated a considerable research effort for the past decade focused mostly on electrical actuation subsystem and control strategies. Examples of application areas are: (a) Turbomachinery, (b) Vibration isolation, (c) Machine tools and electric drives, (d) Energy storing flywheels, (e) Instruments in space and physics, (f) Non-contacting suspensions for micro-techniques, (g) Identification and test equipment in rotordynamics. This chapter illustrates the design, the modeling, the experimental tests and validation of all the subsystems of a rotors on a five-axes active magnetic suspension. The mechanical, electrical, electronic and control strategies aspects are explained with a mechatronic approach evaluating all the interactions between them. The main goals of the manuscript are: ‱ Illustrate the design and the modeling phases of a five-axes active magnetic suspension; ‱ Discuss the design steps and the practical implementation of a standard suspension control strategy; ‱ Introduce an off-line technique of electrical centering of the actuators; ‱ Illustrate the design steps and the practical implementation of an online rotor selfcentering control technique. The experimental test rig is a shaft (Weight: 5.3 kg. Length: 0.5 m) supported by two radial and one axial cylindrical active magnetic bearings and powered by an asynchronous high frequency electric motor. The chapter starts on an overview of the most common technologies used to support rotors with a deep analysis of their advantages and drawbacks with respect to active magnetic bearings. Furthermore a discussion on magnetic suspensions state of the art is carried out highlighting the research efforts directions and the goals reached in the last years. In the central sections, a detailed description of each subsystem is performed along with the modeling steps. In particular the rotor is modeled with a FE code while the actuators are considered in a linearized model. The last sections of the chapter are focused on the control strategies design and the experimental tests. An off-line technique of actuators electrical centering is explained and its advantages are described in the control design context. This strategy can be summarized as follows. Knowing that: a) each actuation axis is composed by two electromagnets; b) each electromagnet needs a current closed-loop control; c) the bandwidth of this control is depending on the mechanical airgap, then the technique allows to obtain the same value of the closed-loop bandwidth of the current control of both the electromagnets of the same actuation axis. This approach improves performance and gives more steadiness to the control behavior. The decentralized approach of the control strategy allowing the full suspensions on five axes is illustrated from the design steps to the practical implementation on the control unit. Furthermore a selfcentering technique is described and implemented on the experimental test rig: this technique uses a mobile notch filter synchronous with the rotational speed and allows the rotor to spin around its mass center. The actuators are not forced to counteract the unbalance excitation avoiding saturations. Finally, the experimental tests are carried out on the rotor to validate the suspension control, the off-line electrical centering and the selfcentering technique. The numerical and experimental results are superimposed and compared to prove the effectiveness of the modeling approach

    Structural dynamics branch research and accomplishments to FY 1992

    Get PDF
    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications
    • 

    corecore