4,246 research outputs found

    Transition from Islanded to grid-connected mode of microgrids with voltage-based droop control

    Get PDF
    Microgrids are able to provide a coordinated integration of the increasing share of distributed generation (DG) units in the network. The primary control of the DG units is generally performed by droop-based control algorithms that avoid communication. The voltage-based droop (VBD) control is developed for islanded low-voltage microgrids with a high share of renewable energy sources. With VBD control, both dispatchable and less-dispatchable units will contribute in the power sharing and balancing. The priority for power changes is automatically set dependent on the terminal voltages. In this way, the renewables change their output power in more extreme voltage conditions compared to the dispatchable units, hence, only when necessary for the reliability of the network. This facilitates the integration of renewable units and improves the reliability of the network. This paper focusses on modifying the VBD control strategy to enable a smooth transition between the islanded and the grid-connected mode of the microgrid. The VBD control can operate in both modes. Therefore, for islanding, no specific measures are required. To reconnect the microgrid to the utility network, the modified VBD control synchronizes the voltage of a specified DG unit with the utility voltage. It is shown that this synchronization procedure significantly limits the switching transient and enables a smooth mode transfer

    Smart microgrids and virtual power plants in a hierarchical control structure

    Get PDF
    In order to achieve a coordinated integration of distributed energy resources in the electrical network, an aggregation of these resources is required. Microgrids and virtual power plants (VPPs) address this issue. Opposed to VPPs, microgrids have the functionality of islanding, for which specific control strategies have been developed. These control strategies are classified under the primary control strategies. Microgrid secondary control deals with other aspects such as resource allocation, economic optimization and voltage profile improvements. When focussing on the control-aspects of DER, VPP coordination is similar with the microgrid secondary control strategy, and thus, operates at a slower time frame as compared to the primary control and can take full advantage of the available communication provided by the overlaying smart grid. Therefore, the feasibility of the microgrid secondary control for application in VPPs is discussed in this paper. A hierarchical control structure is presented in which, firstly, smart microgrids deal with local issues in a primary and secondary control. Secondly, these microgrids are aggregated in a VPP that enables the tertiary control, forming the link with the electricity markets and dealing with issues on a larger scale

    Automatic power sharing modification of P/V droop controllers in low-voltage resistive microgrids

    Get PDF
    Microgrids are receiving an increasing interest to integrate the growing share of distributed generation (DG) units in the electrical network. For the islanded operation of the microgrid, several control strategies for the primary control have been developed to ensure a stable microgrid operation. In lowvoltage microgrids, active power/voltage (P/V ) droop controllers are gaining attention as they take into account the resistive nature of the network lines and the lack of directly-coupled rotating inertia. However, a problem often cited with these droop controllers is that the grid voltage is not a global parameter. This can influence the power sharing between different units. In this paper, it is investigated whether this is actually a disadvantage of the control strategy. It is shown that with P/V droop control, the DG units that are located electrically far from the load centres automatically deliver a lower share of the power. This automatic power sharing modification can lead to decreased line losses, thus, an overall better efficiency compared to the methods that focus on perfect power sharing. In this paper, the P/V and P/f droop control strategies are compared with respect to this power sharing modification and the line losses

    Increasing security of supply by the use of a local power controller during large system disturbances

    Get PDF
    This paper describes intelligent ways in which distributed generation and local loads can be controlled during large system disturbances, using Local Power Controllers. When distributed generation is available, and a system disturbance is detected early enough, the generation can be dispatched, and its output power can be matched as closely as possible to local microgrid demand levels. Priority-based load shedding can be implemented to aid this process. In this state, the local microgrid supports the wider network by relieving the wider network of the micro-grid load. Should grid performance degrade further, the local microgrid can separate itself from the network and maintain power to the most important local loads, re-synchronising to the grid only after more normal performance is regained. Such an intelligent system would be a suitable for hospitals, data centres, or any other industrial facility where there are critical loads. The paper demonstrates the actions of such Local Power Controllers using laboratory experiments at the 10kVA scale

    Contribution of a smart transformer in the local primary control of a microgrid

    Get PDF
    In order to enable an easy participation of microgrids in the electricity markets, the smart transformer (ST) concept has been developed. The ST controls the power exchange between a microgrid and the utility network by only controlling its microgrid side voltage, instead of the conventional arrangement where new set points are communicated to all microgrid elements. When the voltage-based droop (VBD) control is implemented in the DG units, loads and storage elements, all microgrid units automatically respond to this change of microgrid voltage by altering their power output or consumption. However, this reference value of power exchange is dependent on (day-ahead) predictions of both consumption and (renewable) power generation. Hence, when these predictions prove to be inaccurate, the ST will still control the power exchange, but with consequently large variations of the microgrid voltage from its nominal value. It is suggested to take the real-time microgrid voltage into account when determining the reference power of the ST. This is presented in this paper by extending the ST's control strategy with a VBD control, such that the ST can contribute in the primary control. Simulations are included to analyze this primary control of the ST combined with VBD control of the other microgrid elements

    Performance evaluation of secondary control policies with respect to digital communications properties in inverter-based islanded microgrids

    Get PDF
    A key challenge for inverted-based microgrids working in islanded mode is to maintain their own frequency and voltage to a certain reference values while regulating the active and reactive power among distributed generators and loads. The implementation of frequency and voltage restoration control policies often requires the use of a digital communication network for real-time data exchange (tertiary control covers the coordi- nated operation of the microgrid and the host grid). Whenever a digital network is placed within the loop, the operation of the secondary control may be affected by the inherent properties of the communication technology. This paper analyses the effect that properties like transmission intervals and message dropouts have for four existing representative approaches to secondary control in a scalable islanded microgrid. The simulated results reveals pros and cons for each approach, and identifies threats that properly avoided or handled in advance can prevent failures that otherwise would occur. Selected experimental results on a low- scale laboratory microgrid corroborate the conclusions extracted from the simulation study.Peer ReviewedPostprint (author's final draft

    Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    Get PDF
    In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial Electronic

    Voltage-based droop control of renewables to avoid on-off oscillations caused by overvoltages

    Get PDF
    To achieve the environmental goals set by many governments, an increasing amount of renewable energy, often delivered by distributed-generation (DG) units, is injected into the electrical power system. Despite the many advantages of DG, this can lead to voltage problems, especially in times of a high local generation and a low local load. The traditional solution is to invest in more and stronger lines, which could lead to massive investments to cope with the huge rise of DG connection. Another common solution is to include hard curtailment; thus, ON-OFF control of DG units. However, hard curtailment potentially leads to ON-OFF oscillations of DG and a high loss of the available renewable energy as storage is often not economically viable. To cope with these issues, applying a grid-forming control in grid-connected DG units is studied in this paper. The voltage-based droop control that was originally developed for power sharing in islanded microgrids, enables an effective way for soft curtailment without communication. The power changes of the renewable energy sources are delayed to more extreme voltages compared to those of the dispatchable units. This restricts the renewable energy loss and avoids ON-OFF oscillations
    • …
    corecore