10,579 research outputs found

    Active Learning to Maximize Area Under the ROC Curve

    Full text link

    Threshold Determination for ARTMAP-FD Familiarity Discrimination

    Full text link
    The ARTMAP-FD neural network performs both identification (placing test patterns in classes encountered during training) and familiarity discrimination (judging whether a test pattern belongs to any of the classes encountered during training). ARTMAP-FD quantifies the familiarity of a test pattern by computing a measure of the degree to which the pattern's components lie within the ranges of values of training patterns grouped in the same cluster. This familiarity measure is compared to a threshold which can be varied to generate a receiver operating characteristic (ROC) curve. Methods for selecting optimal values for the threshold are evaluated. The performance of validation-set methods is compared with that of methods which track the development of the network's discrimination capability during training. The techniques are applied to databases of simulated radar range profiles.Advanced Research Projects Agency; Office of Naval Research (N00011-95-1-0657, N00011-95-0109, NOOOB-96-0659); National Science Foundation (IRI-94-01659

    Homo economicus in visual search

    Get PDF
    How do reward outcomes affect early visual performance? Previous studies found a suboptimal influence, but they ignored the non-linearity in how subjects perceived the reward outcomes. In contrast, we find that when the non-linearity is accounted for, humans behave optimally and maximize expected reward. Our subjects were asked to detect the presence of a familiar target object in a cluttered scene. They were rewarded according to their performance. We systematically varied the target frequency and the reward/penalty policy for detecting/missing the targets. We find that 1) decreasing the target frequency will decrease the detection rates, in accordance with the literature. 2) Contrary to previous studies, increasing the target detection rewards will compensate for target rarity and restore detection performance. 3) A quantitative model based on reward maximization accurately predicts human detection behavior in all target frequency and reward conditions; thus, reward schemes can be designed to obtain desired detection rates for rare targets. 4) Subjects quickly learn the optimal decision strategy; we propose a neurally plausible model that exhibits the same properties. Potential applications include designing reward schemes to improve detection of life-critical, rare targets (e.g., cancers in medical images)

    Familiarity Discrimination of Radar Pulses

    Full text link
    The ARTMAP-FD neural network performs both identification (placing test patterns in classes encountered during training) and familiarity discrimination (judging whether a test pattern belongs to any of the classes encountered during training). The performance of ARTMAP-FD is tested on radar pulse data obtained in the field, and compared to that of the nearest-neighbor-based NEN algorithm and to a k > 1 extension of NEN

    Support Vector Machines for Credit Scoring and discovery of significant features

    Get PDF
    The assessment of risk of default on credit is important for financial institutions. Logistic regression and discriminant analysis are techniques traditionally used in credit scoring for determining likelihood to default based on consumer application and credit reference agency data. We test support vector machines against these traditional methods on a large credit card database. We find that they are competitive and can be used as the basis of a feature selection method to discover those features that are most significant in determining risk of default. 1

    Rapid Diagnostic Algorithms as a Screening Tool for Tuberculosis: An Assessor Blinded Cross-Sectional Study

    Get PDF
    Background: A major obstacle to effectively treat and control tuberculosis is the absence of an accurate, rapid, and low-cost diagnostic tool. A new approach for the screening of patients for tuberculosis is the use of rapid diagnostic classification algorithms. Methods: We tested a previously published diagnostic algorithm based on four biomarkers as a screening tool for tuberculosis in a Central European patient population using an assessor-blinded cross-sectional study design. In addition, we developed an improved diagnostic classification algorithm based on a study population at a tertiary hospital in Vienna, Austria, by supervised computational statistics. Results: The diagnostic accuracy of the previously published diagnostic algorithm for our patient population consisting of 206 patients was 54% (CI: 47%–61%). An improved model was constructed using inflammation parameters and clinical information. A diagnostic accuracy of 86% (CI: 80%–90%) was demonstrated by 10-fold cross validation. An alternative model relying solely on clinical parameters exhibited a diagnostic accuracy of 85% (CI: 79%–89%). Conclusion: Here we show that a rapid diagnostic algorithm based on clinical parameters is only slightly improved by inclusion of inflammation markers in our cohort. Our results also emphasize the need for validation of new diagnostic algorithms in different settings and patient populations
    • …
    corecore