70,124 research outputs found

    Efficient Bayesian Social Learning on Trees

    Get PDF
    We consider a set of agents who are attempting to iteratively learn the 'state of the world' from their neighbors in a social network. Each agent initially receives a noisy observation of the true state of the world. The agents then repeatedly 'vote' and observe the votes of some of their peers, from which they gain more information. The agents' calculations are Bayesian and aim to myopically maximize the expected utility at each iteration. This model, introduced by Gale and Kariv (2003), is a natural approach to learning on networks. However, it has been criticized, chiefly because the agents' decision rule appears to become computationally intractable as the number of iterations advances. For instance, a dynamic programming approach (part of this work) has running time that is exponentially large in \min(n, (d-1)^t), where n is the number of agents. We provide a new algorithm to perform the agents' computations on locally tree-like graphs. Our algorithm uses the dynamic cavity method to drastically reduce computational effort. Let d be the maximum degree and t be the iteration number. The computational effort needed per agent is exponential only in O(td) (note that the number of possible information sets of a neighbor at time t is itself exponential in td). Under appropriate assumptions on the rate of convergence, we deduce that each agent is only required to spend polylogarithmic (in 1/\eps) computational effort to approximately learn the true state of the world with error probability \eps, on regular trees of degree at least five. We provide numerical and other evidence to justify our assumption on convergence rate. We extend our results in various directions, including loopy graphs. Our results indicate efficiency of iterative Bayesian social learning in a wide range of situations, contrary to widely held beliefs.Comment: 11 pages, 1 figure, submitte

    Inductive queries for a drug designing robot scientist

    Get PDF
    It is increasingly clear that machine learning algorithms need to be integrated in an iterative scientific discovery loop, in which data is queried repeatedly by means of inductive queries and where the computer provides guidance to the experiments that are being performed. In this chapter, we summarise several key challenges in achieving this integration of machine learning and data mining algorithms in methods for the discovery of Quantitative Structure Activity Relationships (QSARs). We introduce the concept of a robot scientist, in which all steps of the discovery process are automated; we discuss the representation of molecular data such that knowledge discovery tools can analyse it, and we discuss the adaptation of machine learning and data mining algorithms to guide QSAR experiments

    Transfer Learning for Content-Based Recommender Systems using Tree Matching

    Full text link
    In this paper we present a new approach to content-based transfer learning for solving the data sparsity problem in cases when the users' preferences in the target domain are either scarce or unavailable, but the necessary information on the preferences exists in another domain. We show that training a system to use such information across domains can produce better performance. Specifically, we represent users' behavior patterns based on topological graph structures. Each behavior pattern represents the behavior of a set of users, when the users' behavior is defined as the items they rated and the items' rating values. In the next step we find a correlation between behavior patterns in the source domain and behavior patterns in the target domain. This mapping is considered a bridge between the two domains. Based on the correlation and content-attributes of the items, we train a machine learning model to predict users' ratings in the target domain. When we compare our approach to the popularity approach and KNN-cross-domain on a real world dataset, the results show that on an average of 83% of the cases our approach outperforms both methods

    Active Learning for Undirected Graphical Model Selection

    Full text link
    This paper studies graphical model selection, i.e., the problem of estimating a graph of statistical relationships among a collection of random variables. Conventional graphical model selection algorithms are passive, i.e., they require all the measurements to have been collected before processing begins. We propose an active learning algorithm that uses junction tree representations to adapt future measurements based on the information gathered from prior measurements. We prove that, under certain conditions, our active learning algorithm requires fewer scalar measurements than any passive algorithm to reliably estimate a graph. A range of numerical results validate our theory and demonstrates the benefits of active learning.Comment: AISTATS 201

    Learning Multimodal Graph-to-Graph Translation for Molecular Optimization

    Full text link
    We view molecular optimization as a graph-to-graph translation problem. The goal is to learn to map from one molecular graph to another with better properties based on an available corpus of paired molecules. Since molecules can be optimized in different ways, there are multiple viable translations for each input graph. A key challenge is therefore to model diverse translation outputs. Our primary contributions include a junction tree encoder-decoder for learning diverse graph translations along with a novel adversarial training method for aligning distributions of molecules. Diverse output distributions in our model are explicitly realized by low-dimensional latent vectors that modulate the translation process. We evaluate our model on multiple molecular optimization tasks and show that our model outperforms previous state-of-the-art baselines
    • …
    corecore