188 research outputs found

    Modeling, Measurement and Mitigation of Fast Switching Issues in Voltage Source Inverters

    Get PDF
    Wide-bandgap devices are enjoying wider adoption across the power electronics industry for their superior properties and the resulting opportunities for higher efficiency and power density. However, various issues arise due to the faster switching speed, including switching transient voltage overshoot, unstable oscillation, gate driving and evaluation difficulty, measurement and monitoring challenge, and potential load insulation degradation. This dissertation first sets out to model and understand the switching transient voltage overshoots. Unique oscillation patterns and features of the turn-on and turn-off overvoltage are discovered and analyzed, which provides new insights into the switching transient. During the experimental characterization, a new unstable oscillation pattern is found during the trench MOSFET\u27s turn-off transient. The MOSFET channel may be falsely turned back on, resulting in severe oscillation and possible loss of control. Time-domain and large-signal analytical models are established, which reveals the negative impact of common-source inductances and unconventional capacitance curve of trench MOSFET. Besides the devices themselves, another determining part in their switching transient behavior is the gate driver. A programmable gate driver platform is proposed to readily adapt to different power semiconductors and driving schemes, which can greatly facilitate the evaluation and comparison of different devices and driving schemes. The faster switching speed of wide-bandgap devices also requires more demanding measurement and monitoring solutions. A novel combinational Rogowski coil concept is proposed, which leverages the self-integrating feature to further increase the bandwidth. Prototypes achieved more than 300 MHz bandwidth, while keeping the cross-sectional area less than 2.5 mm2^2. Finally, the very high voltage slew rate of wide-bandgap devices may negatively impact the motor load insulation. Attempting to fully utilize the higher switching frequency capability, sinewave and dv/dtdv/dt filters are compared. It is shown that sinewave filters can achieve higher efficiency and power density than dv/dtdv/dt filters, especially for high frequency applications

    Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II

    Get PDF
    Wide bandgap (WBG) semiconductors are becoming a key enabling technology for several strategic fields, including power electronics, illumination, and sensors. This reprint collects the 23 papers covering the full spectrum of the above applications and providing contributions from the on-going research at different levels, from materials to devices and from circuits to systems

    Advances in PV Inverters

    Get PDF

    Analysis of performance of SiC bipolar semiconductor devices for grid-level converters

    Get PDF
    Recent commercialization of SiC bipolar devices, including SiC BJT, SiC MPS diode and SiC PiN diodes have enabled potential candidates to replace their SiC unipolar counterparts. However, the prospects of 4H-SiC power bipolar devices still need further investigation. This thesis compares the static and dynamic performance and reliability for the commercial SiC bipolar devices including SiC BJT, SiC MPS diode and SiC PiN diode and their similarly rated Silicon counterparts mainly by means of experimental measurements.Through comprehensive double-pulse measurements, the turn-on and turn-off transition in Silicon BJT is seen to be much slower than that of the SiC BJT while the transient time will increase with temperature and decreases with collector currents. The common-emitter current gain (β) of SiC BJT is also found to be much higher than its Silicon counterpart. Significant turn-off delay is observed in single Si BJT which becomes worse when in parallel connection as it aggravates the current mismatch across the two devices, while this delay is almost non-existent in SiC devices. The current collapse seen in single SiC BJT is mitigated by parallel connection. These are dependant on temperature and base resistance, especially in the case of Silicon BJT. The static performance of power Silicon and SiC BJT has also been evaluated. It has been found that the higher base-emitter junction voltage of SiC BJTs enables quasi-saturation mode of operation with low on-resistance, which is also the case for Silicon BJTs only at high base currents. In terms of DC gain measured under steady state operation, the observed negative temperature coefficient (NTC) of β in SiC BJTs and the positive coefficient (PTC) in Silicon BJTs can make the β of SiC BJT lower than that in Silicon at high temperatures. It has been found that parallel connection promotes both the on-state conductivity and current gain in Silicon BJTs and conductivity in SiC BJTs.The characterization of power diodes reveals that the superior switching performance of the SiC MPS & JBS diode when compared with the Si PiN diode is due to the absence of the stored charge. This also leads to the larger on-state voltage in both SiC diodes and becomes worse at high currents under high temperatures. Through comprehensive Unclamped Inductive Switching (UIS) measurements, it is seen that the avalanche ruggedness of SiC MPS & JBS diodes outperform that of the closely rated Silicon PiN diode taking advantage of the wide-bandgap properties of SiC. Higher critical avalanche energy and thus better avalanche ruggedness can also be observed in SiC JBS diode compared with the SiC MPS diode. SiC MPS diodes can compete with Si PiN diodes in terms of the surge current limits, while the SiC JBS diode failed under a lower electrothermal stress. This is observed by the dramatic increase in its reverse leakage current at lower voltages.The 15 kV SiC PiN diodes feature smaller device dimensions, less reverse recovery charge and less on-resistance when compared to the 15 kV Silicon PiN diodes. Nevertheless, when evaluating its long-term reliability by using the aggravated power cycling configuration, the high junction temperature together with the dislocation defects in the SiC PiN diode accelerate its degradation. Such degradations are not observed in Silicon PiN diodes for the same junction temperature and high-temperature stress periods

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Power and Energy Student Summit 2019: 9 – 11 July 2019 Otto von Guericke University Magdeburg ; Conference Program

    Get PDF
    The book includes a short description of the conference program of the "Power and Energy Student Summit 2019". The conference, which is orgaized for students in the area of electric power systems, covers topics such as renewable energy, high voltage technology, grid control and network planning, power quality, HVDC and FACTS as well as protection technology. Besides the overview of the conference venue, activites and the time schedule, the book includes all papers presented at the conference

    Modeling and Characterization of High-Power Electronic Devices: System Analysis of Laser Diodes with Flash Boiling and GaN HEMT Reliability Modeling

    Get PDF
    Modern electronics are increasingly more capable of high-power density operation, which presents important thermal challenges. High-power laser diode bars have proliferated in recent years, and while they can generate high optical powers, slope efficiencies are theoretically limited, resulting in high excess heat loads and consequent temperature shifts that can impair many applications. As a result, managing the ensuing heat flux and temperature changes has become increasingly important. Although traditional single-phase cooling solutions are limited by their convection coefficient to a certain temperature difference, two-phase solutions have potential for significantly higher convective coefficients. Flash boiling is a cooling method that can facilitate high levels of transient convective heat transfer, while allowing active control of coolant temperature. The transient nature of a flash cooling event is compatible with the heat load generated during operation of a high-power laser diode bar. Here, optical properties including spectral shift, spectral broadening, optical power, and beam quality are characterized over time. System inputs and outputs are correlated and evaluated via a statistical surrogate model. In certain cases, flash boiling is demonstrated to be a viable means of regulating laser diode bar temperature to achieve desirable optical output characteristics. In parallel, GaN HEMTs have seen rapid adoption in electronics applications due to their capability to operate at high powers at quick switching rates. As power levels rise, thermal management becomes crucial to avoid long-term degradation of the device. Spatial thermal modeling can help improve long-term reliability by linking local temperatures with various temperature dependent failure mechanisms such as hot-carrier injection

    A portable device for time-resolved fluorescence based on an array of CMOS SPADs with integrated microfluidics

    Get PDF
    [eng] Traditionally, molecular analysis is performed in laboratories equipped with desktop instruments operated by specialized technicians. This paradigm has been changing in recent decades, as biosensor technology has become as accurate as desktop instruments, providing results in much shorter periods and miniaturizing the instrumentation, moving the diagnostic tests gradually out of the central laboratory. However, despite the inherent advantages of time-resolved fluorescence spectroscopy applied to molecular diagnosis, it is only in the last decade that POC (Point Of Care) devices have begun to be developed based on the detection of fluorescence, due to the challenge of developing high-performance, portable and low-cost spectroscopic sensors. This thesis presents the development of a compact, robust and low-cost system for molecular diagnosis based on time-resolved fluorescence spectroscopy, which serves as a general-purpose platform for the optical detection of a variety of biomarkers, bridging the gap between the laboratory and the POC of the fluorescence lifetime based bioassays. In particular, two systems with different levels of integration have been developed that combine a one-dimensional array of SPAD (Single-Photon Avalanch Diode) pixels capable of detecting a single photon, with an interchangeable microfluidic cartridge used to insert the sample and a laser diode Pulsed low-cost UV as a source of excitation. The contact-oriented design of the binomial formed by the sensor and the microfluidic, together with the timed operation of the sensors, makes it possible to dispense with the use of lenses and filters. In turn, custom packaging of the sensor chip allows the microfluidic cartridge to be positioned directly on the sensor array without any alignment procedure. Both systems have been validated, determining the decomposition time of quantum dots in 20 nl of solution for different concentrations, emulating a molecular test in a POC device.[cat] Tradicionalment, l'anàlisi molecular es realitza en laboratoris equipats amb instruments de sobretaula operats per tècnics especialitzats. Aquest paradigma ha anat canviant en les últimes dècades, a mesura que la tecnologia de biosensor s'ha tornat tan precisa com els instruments de sobretaula, proporcionant resultats en períodes molt més curts de temps i miniaturitzant la instrumentació, permetent així, traslladar gradualment les proves de diagnòstic fora de laboratori central. No obstant això i malgrat els avantatges inherents de l'espectroscòpia de fluorescència resolta en el temps aplicada a la diagnosi molecular, no ha estat fins a l'última dècada que s'han començat a desenvolupar dispositius POC (Point Of Care) basats en la detecció de la fluorescència, degut al desafiament que suposa el desenvolupament de sensors espectroscòpics d'alt rendiment, portàtils i de baix cost. Aquesta tesi presenta el desenvolupament d'un sistema compacte, robust i de baix cost per al diagnòstic molecular basat en l'espectroscòpia de fluorescència resolta en el temps, que serveixi com a plataforma d'ús general per a la detecció òptica d'una varietat de biomarcadors, tancant la bretxa entre el laboratori i el POC dels bioassaigs basats en l'anàlisi de la pèrdua de la fluorescència. En particular, s'han desenvolupat dos sistemes amb diferents nivells d'integració que combinen una matriu unidimensional de píxels SPAD (Single-Photon Avalanch Diode) capaços de detectar un sol fotó, amb un cartutx microfluídic intercanviable emprat per inserir la mostra, així com un díode làser UV premut de baix cost com a font d'excitació. El disseny orientat a la detecció per contacte de l'binomi format pel sensor i la microfluídica, juntament amb l'operació temporitzada dels sensors, permet prescindir de l'ús de lents i filtres. Al seu torn, l'empaquetat a mida de l'xip sensor permet posicionar el cartutx microfluídic directament sobre la matriu de sensors sense cap procediment d'alineament. Tots dos sistemes han estat validats determinant el temps de descomposició de "quantum dots" en 20 nl de solució per a diferents concentracions, emulant així un assaig molecular en un dispositiu POC

    Electronic Photonic Integrated Circuits and Control Systems

    Get PDF
    Photonic systems can operate at frequencies several orders of magnitude higher than electronics, whereas electronics offers extremely high density and easily built memories. Integrated photonic-electronic systems promise to combine advantage of both, leading to advantages in accuracy, reconfigurability and energy efficiency. This work concerns of hybrid and monolithic electronic-photonic system design. First, a high resolution voltage supply to control the thermooptic photonic chip for time-bin entanglement is described, in which the electronics system controller can be scaled with more number of power channels and the ability to daisy-chain the devices. Second, a system identification technique embedded with feedback control for wavelength stabilization and control model in silicon nitride photonic integrated circuits is proposed. Using the system, the wavelength in thermooptic device can be stabilized in dynamic environment. Third, the generation of more deterministic photon sources with temporal multiplexing established using field programmable gate arrays (FPGAs) as controller photonic device is demonstrated for the first time. The result shows an enhancement to the single photon output probability without introducing additional multi-photon noise. Fourth, multiple-input and multiple-output (MIMO) control of a silicon nitride thermooptic photonic circuits incorporating Mach Zehnder interferometers (MZIs) is demonstrated for the first time using a dual proportional integral reference tracking technique. The system exhibits improved performance in term of control accuracy by reducing wavelength peak drift due to internal and external disturbances. Finally, a monolithically integrated complementary metal oxide semiconductor (CMOS) nanophotonic segmented transmitter is characterized. With segmented design, the monolithic Mach Zehnder modulator (MZM) shows a low link sensitivity and low insertion loss with driver flexibility
    • …
    corecore