8 research outputs found

    Nonlinear Estimation and Control Methods for Mechanical and Aerospace Systems under Actuator Uncertainty

    Get PDF
    Air flow velocity field control is of crucial importance in aerospace applications to prevent the potentially destabilizing effects of phenomena such as cavity ow oscillations, flow separation, flow-induced limit cycle oscillations (LCO) (flutter), vorticity, and acoustic instabilities. Flow control is also important in aircraft applications to reduce drag in aircraft wings for improved flight performance. Although passive flow control approaches are often utilized due to their simplicity, active flow control (AFC) methods can achieve improved flight performance over a wider range of time-varying operating conditions by automatically adjusting their level of control actuation in response to real-time sensor measurements. Although several methods for AFC have been presented in recent literature, there remain numerous challenges to be overcome in closed-loop nonlinear AFC design. Additional challenges arise in control design for practical systems with limited onboard sensor measurements and uncertain actuator dynamics. In this thesis, robust nonlinear control methods are developed, which are rigorously proven to achieve reliable control of fluid flow systems under uncertain, time-varying operating conditions and actuator model uncertainty. Further, to address the practical control design challenges resulting from sensor limitations, this thesis research will investigate and develop new methods of sliding mode estimation, which are shown to achieve finite-time state estimation for systems with limited onboard sensing capabilities. The specific contributions presented in this thesis include: 1) the application of proper orthogonal decomposition (POD)-based model order reduction techniques to develop simplified, control-oriented mathematical models of actuated fluid flow dynamic systems; 2) the rigorous development of nonlinear closed-loop active flow control techniques to achieve asymptotic regulation of fluid flow velocity fields; 3) the design of novel sliding mode estimation and control methods to regulate fluid flow velocity fields in the presence of actuator uncertainty; 4) the design of a nonlinear control method that achieves simultaneous fluid flow velocity control and LCO suppression in a flexible airfoil; and 5) the analysis of a discontinuous hierarchical sliding mode estimation method using a differential inclusions-based technique

    Stall Control of a NACA0015 Aerofoil at Low Reynolds Numbers

    Get PDF
    This thesis focuses on experiments for stall control by using boundary layer trips on a NACA0015 aerofoil wing at low Reynolds numbers. Some simulation for a 2D aerofoil simulation was studied. The NACA0015 aerofoil simulation with different numbers of node and turbulence models at an angle of attack of 6 degrees was investigated for grid independence study. Then the mesh of 400 nodes around the aerofoil was chosen in simulation at various angles of attack. For the experiments, a NACA0015 wing with and without boundary layer trip at Reynolds number of 78,000 was conducted to determine the aerodynamic characteristics of the aerofoil in both cases and to determine the optimized values of the size and location of the boundary layer trips. The results show that the wing with no trip stalled at the angle of attack of 14 degrees with CLmax of 0.78. As a result of the roughness of the wing, the interference drag between the wing and the struts and the induced drag from wing tip vortices, the total drag coefficient values are higher than that of the aerofoil. When the boundary layer trips were added to the wing, the results showed that lift coefficients of every BLT height located at 50%c from the leading edge are highest when compared to other positions. The results state that 6 mm height BLT located at 50%c produced lowest CL while normal wing without BLT produced highest CL for angles of attack between 0⁰ and 14⁰. The BLT causes less severe stalling due to LSB reduction and reattachment resulting in more lift as the angle of attack increases to greater than 15⁰. Drag coefficients of BLT height of 6, 4, 3, and 1.5 mm located at 50%c from the leading edge were compared to the wing without BLT. The results indicate that 4 mm height BLT generated lowest CD compared to all cases both the normal wing and the wing with BLT. For CFD simulations at Reynolds number of 650,000, the 2D NACA0015 aerofoil simulations with different turbulence models shows that the Cl slope is in good agreement with the 2D experimental results(NACA report No.586) from 0° to 9° of angle of attack. The obvious difference can be seen after 12°. Stall angle of the turbulence models are higher than that of the experiment due to the mesh construction and the sharp trailing edge of the aerofoil in CFD simulation that is sharper than the aerofoil model tested experimentally

    Unmanned Aerial Systems: Research, Development, Education & Training at Embry-Riddle Aeronautical University

    Get PDF
    With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks. Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part provides a brief summary of each of the various activities, while the second part lists the faculty associated with those activities. Within the first part of this document we have separated UAS activities into two broad areas: Engineering and Applications. Each of these broad areas is then further broken down into six sub-areas, which are listed in the Table of Contents. The second part lists the faculty, sorted by campus (Daytona Beach-D, Prescott-P and Worldwide-W) associated with the UAS activities. The UAS activities and the corresponding faculty are cross-referenced. We have chosen to provide very short summaries of the UAS activities rather than lengthy descriptions. If more information is desired, please contact me directly, or visit our research website (https://erau.edu/research), or contact the appropriate faculty member using their e-mail address provided at the end of this document

    MODELING AND EXPERIMENTAL ANALYSIS OF PHASED ARRAY SYNTHETIC JET CROSS-FLOW INTERACTIONS

    Get PDF
    Synthetic Jet Actuators (SJAs) are fluidic devices capable of adding momentum to static or non-static bodies of fluid without adding mass. They are therefore categorized as zero-net-mass-flux (ZNMF) momentum source. In its simplest compact form a SJA consists of an oscillatory surface connected to a cavity with a single exit orifice through which the fluid enters and exits. SJA technology has been utilized in applications ranging from boundary layer control over aerodynamic surfaces to fluidic mixing in dispersion applications. The ZNMF nature of the technology means it is not subject to constraints experienced by traditional momentum sources that require the addition of mass in order to impart momentum. The momentum that can be added by a single SJA is limited by the energy transfer capabilities of the oscillating surface. In modern SJAs this surface usually is a piezoceramic/metal composite subjected to a high voltage AC signal. For applications such as flow control over aerodynamic surfaces, modern SJAs are used in an array configuration and are capable of altering the flow momentum by values ranging from 0.01-10%. While it is possible to build larger actuators to increase this value the benefits associated with the compact size would be lost. It is therefore desirable to tune other parameters associated with SJA arrays to increase this value. The specific motivation for this study comes from the desire to control the momentum addition capacity of a specific SJA array, without having to alter any geometric parameters. In a broader sense this study focuses on understanding the physics of SJA interaction in array configuration through experiments which are then used to guide in the design of modeling technique that predicts SJA array behavior in cross-flows. The first half of the project focused on understanding SJA behavior through modeling. Numerical techniques were initially used to model SJA and SJA arrays in cross-flows. Reduced numerical models were then developed from the full momentum equations. Analytical methods to solve these reduced order models were then implemented in order to cut down on solution time. A wave equation based solution to the stream and vorticity formulation of the momentum equations was implemented to predict SJA behavior. For the experimental component of the project, a finite span high aspect ratio orifice SJA was designed and characterized through Constant Temperature Anemometry (CTA). Two of these SJA were then placed in close proximity to one another. The relative phase of operation between the two jets was altered and the resulting flow field was measured through Particle Image Velocimetry (PIV). This process was repeated for different sets of array spacing, and SJA to cross-flow velocity ratio. For specific choices of these parameters a 40% increase in momentum addition was observed. The experimental results were used to validate the modeling techniques. In general reasonable agreement between the modeling and experiment was observed in specific domains of the flow field

    A Summary of NASA Rotary Wing Research: Circa 20082018

    Get PDF
    The general public may not know that the first A in NASA stands for Aeronautics. If they do know, they will very likely be surprised that in addition to airplanes, the A includes research in helicopters, tiltrotors, and other vehicles adorned with rotors. There is, arguably, no subsonic air vehicle more difficult to accurately analyze than a vehicle with lift-producing rotors. No wonder that NASA has conducted rotary wing research since the days of the NACA and has partnered, since 1965, with the U.S. Army in order to overcome some of the most challenging obstacles to understanding the behavior of these vehicles. Since 2006, NASA rotary wing research has been performed under several different project names [Gorton et al., 2015]: Subsonic Rotary Wing (SRW) (20062012), Rotary Wing (RW) (20122014), and Revolutionary Vertical Lift Technology (RVLT) (2014present). In 2009, the SRW Project published a report that assessed the status of NASA rotorcraft research; in particular, the predictive capability of NASA rotorcraft tools was addressed for a number of technical disciplines. A brief history of NASA rotorcraft research through 2009 was also provided [Yamauchi and Young, 2009]. Gorton et al. [2015] describes the system studies during 20092011 that informed the SRW/RW/RVLT project investment prioritization and organization. The authors also provided the status of research in the RW Project in engines, drive systems, aeromechanics, and impact dynamics as related to structural dynamics of vertical lift vehicles. Since 2009, the focus of research has shifted from large civil VTOL transports, to environmentally clean aircraft, to electrified VTOL aircraft for the urban air mobility (UAM) market. The changing focus of rotorcraft research has been a reflection of the evolving strategic direction of the NASA Aeronautics Research Mission Directorate (ARMD). By 2014, the project had been renamed the Revolutionary Vertical Lift Technology Project. In response to the 2014 NASA Strategic Plan, ARMD developed six Strategic Thrusts. Strategic Thrust 3B was defined as the Ultra-Efficient Commercial VehiclesVertical Lift Aircraft. Hochstetler et al. [2017] uses Thrust 3B as an example for developing metrics usable by ARMD to measure the effectiveness of each of the Strategic Thrusts. The authors provide near-, mid-, and long-term outcomes for Thrust 3B with corresponding benefits and capabilities. The importance of VTOL research, especially with the rapidly expanding UAM market, eventually resulted in a new Strategic Thrust (to begin in 2020): Thrust 4Safe, Quiet, and Affordable Vertical Lift Air Vehicles. The underlying rotary wing analysis tools used by NASA are still applicable to traditional rotorcraft and have been expanded in capability to accommodate the growing number of VTOL configurations designed for UAM. The top-level goal of the RVLT Project remains unchanged since 2006: Develop and validate tools, technologies and concepts to overcome key barriers for vertical lift vehicles. In 2019, NASA rotary wing/VTOL research has never been more important for supporting new aircraft and advancements in technology. 2 A decade is a reasonable interval to pause and take stock of progress and accomplishments. In 10 years, digital technology has propelled progress in computational efficiency by orders of magnitude and expanded capabilities in measurement techniques. The purpose of this report is to provide a compilation of the NASA rotary wing research from ~2008 to ~2018. Brief summaries of publications from NASA, NASA-funded, and NASA-supported research are provided in 12 chapters: Acoustics, Aeromechanics, Computational Fluid Dynamics (External Flow), Experimental Methods, Flight Dynamics and Control, Drive Systems, Engines, Crashworthiness, Icing, Structures and Materials, Conceptual Design and System Analysis, and Mars Helicopter. We hope this report serves as a useful reference for future NASA vertical lift researchers

    Active Flow Vector Flight Control Using Only SJAs for a Fixed-Wing UAV

    No full text
    corecore