778 research outputs found

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change

    Machine condition monitoring using artificial intelligence: The incremental learning and multi-agent system approach

    Get PDF
    Machine condition monitoring is gaining importance in industry due to the need to increase machine reliability and decrease the possible loss of production due to machine breakdown. Often the data available to build a condition monitoring system does not fully represent the system. It is also often common that the data becomes available in small batches over a period of time. Hence, it is important to build a system that is able to accommodate new data as it becomes available without compromising the performance of the previously learned data. In real-world applications, more than one condition monitoring technology is used to monitor the condition of a machine. This leads to large amounts of data, which require a highly skilled diagnostic specialist to analyze. In this thesis, artificial intelligence (AI) techniques are used to build a condition monitoring system that has incremental learning capabilities. Two incremental learning algorithms are implemented, the first method uses Fuzzy ARTMAP (FAM) algorithm and the second uses Learn++ algorithm. In addition, intelligent agents and multi-agent systems are used to build a condition monitoring system that is able to accommodate various analysis techniques. Experimentation was performed on two sets of condition monitoring data; the dissolved gas analysis (DGA) data obtained from high voltage bushings and the vibration data obtained from motor bearing. Results show that both Learn++ and FAM are able to accommodate new data without compromising the performance of classifiers on previously learned information. Results also show that intelligent agent and multi-agent system are able to achieve modularity and flexibility

    Fault Diagnosis of Oil-Immersed Transformers Using Self-Organization Antibody Network and Immune Operator

    Get PDF
    There are some drawbacks when diagnosis techniques based on one intelligent method are applied to identify incipient faults in power transformers. In this paper, a hybrid immune algorithm is proposed to improve the reliability of fault diagnosis. The proposed algorithm is a hybridization of self-organization antibody network (soAbNet) and immune operator. There are two phases in immune operator. One is vaccination, and the other is immune selection. In the process of vaccination, vaccines were obtained from training dataset by using consistency-preserving K-means algorithm (K-means-CP algorithm) and were taken as the initial antibodies for soAbNet. After the soAbNet was trained, immune selection was applied to optimize the memory antibodies in the trained soAbNet. The effectiveness of the proposed algorithm is verified using benchmark classification dataset and real-world transformer fault dataset. For comparison purpose, three transformer diagnosis methods such as the IEC criteria, back propagation neural network (BPNN), and soAbNet are utilized. The experimental results indicate that the proposed approach can extract the dataset characteristics efficiently and the diagnostic accuracy is higher than that obtained with other individual methods

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements

    Comparative Analysis of Machine Learning Algorithms for Solar Irradiance Forecasting in Smart Grids

    Full text link
    The increasing global demand for clean and environmentally friendly energy resources has caused increased interest in harnessing solar power through photovoltaic (PV) systems for smart grids and homes. However, the inherent unpredictability of PV generation poses problems associated with smart grid planning and management, energy trading and market participation, demand response, reliability, etc. Therefore, solar irradiance forecasting is essential for optimizing PV system utilization. This study proposes the next-generation machine learning algorithms such as random forests, Extreme Gradient Boosting (XGBoost), Light Gradient Boosted Machine (lightGBM) ensemble, CatBoost, and Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) to forecast solar irradiance. Besides, Bayesian optimization is applied to hyperparameter tuning. Unlike tree-based ensemble algorithms that select the features intrinsically, MLP-ANN needs feature selection as a separate step. The simulation results indicate that the performance of the MLP-ANNs improves when feature selection is applied. Besides, the random forest outperforms the other learning algorithms.Comment: 6 pages, 4 figures, 3 tables, to appear in the 13th Smart Grid Conferenc

    A Comprehensive Survey on Rare Event Prediction

    Full text link
    Rare event prediction involves identifying and forecasting events with a low probability using machine learning and data analysis. Due to the imbalanced data distributions, where the frequency of common events vastly outweighs that of rare events, it requires using specialized methods within each step of the machine learning pipeline, i.e., from data processing to algorithms to evaluation protocols. Predicting the occurrences of rare events is important for real-world applications, such as Industry 4.0, and is an active research area in statistical and machine learning. This paper comprehensively reviews the current approaches for rare event prediction along four dimensions: rare event data, data processing, algorithmic approaches, and evaluation approaches. Specifically, we consider 73 datasets from different modalities (i.e., numerical, image, text, and audio), four major categories of data processing, five major algorithmic groupings, and two broader evaluation approaches. This paper aims to identify gaps in the current literature and highlight the challenges of predicting rare events. It also suggests potential research directions, which can help guide practitioners and researchers.Comment: 44 page

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    Data-driven Protection of Transformers, Phase Angle Regulators, and Transmission Lines in Interconnected Power Systems

    Get PDF
    This dissertation highlights the growing interest in and adoption of machine learning approaches for fault detection in modern electric power grids. Once a fault has occurred, it must be identified quickly and a variety of preventative steps must be taken to remove or insulate it. As a result, detecting, locating, and classifying faults early and accurately can improve safety and dependability while reducing downtime and hardware damage. Machine learning-based solutions and tools to carry out effective data processing and analysis to aid power system operations and decision-making are becoming preeminent with better system condition awareness and data availability. Power transformers, Phase Shift Transformers or Phase Angle Regulators, and transmission lines are critical components in power systems, and ensuring their safety is a primary issue. Differential relays are commonly employed to protect transformers, whereas distance relays are utilized to protect transmission lines. Magnetizing inrush, overexcitation, and current transformer saturation make transformer protection a challenge. Furthermore, non-standard phase shift, series core saturation, low turn-to-turn, and turn-to-ground fault currents are non-traditional problems associated with Phase Angle Regulators. Faults during symmetrical power swings and unstable power swings may cause mal-operation of distance relays, and unintentional and uncontrolled islanding. The distance relays also mal-operate for transmission lines connected to type-3 wind farms. The conventional protection techniques would no longer be adequate to address the above-mentioned challenges due to their limitations in handling and analyzing the massive amount of data, limited generalizability of conventional models, incapability to model non-linear systems, etc. These limitations of conventional differential and distance protection methods bring forward the motivation of using machine learning techniques in addressing various protection challenges. The power transformers and Phase Angle Regulators are modeled to simulate and analyze the transients accurately. Appropriate time and frequency domain features are selected using different selection algorithms to train the machine learning algorithms. The boosting algorithms outperformed the other classifiers for detection of faults with balanced accuracies of above 99% and computational time of about one and a half cycles. The case studies on transmission lines show that the developed methods distinguish power swings and faults, and determine the correct fault zone. The proposed data-driven protection algorithms can work together with conventional differential and distance relays and offer supervisory control over their operation and thus improve the dependability and security of protection systems

    AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and Challenges

    Full text link
    Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes, particularly in cloud infrastructures, to provide actionable insights with the primary goal of maximizing availability. There are a wide variety of problems to address, and multiple use-cases, where AI capabilities can be leveraged to enhance operational efficiency. Here we provide a review of the AIOps vision, trends challenges and opportunities, specifically focusing on the underlying AI techniques. We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful. We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions. We discuss the problem formulation for each task, and then present a taxonomy of techniques to solve these problems. We also identify relatively under explored topics, especially those that could significantly benefit from advances in AI literature. We also provide insights into the trends in this field, and what are the key investment opportunities
    corecore