7,033 research outputs found

    Utilizing semantic networks to database and retrieve generalized stochastic colored Petri nets

    Get PDF
    Previous work has introduced the Planning Coordinator (PCOORD), a coordinator functioning within the hierarchy of the Intelligent Machine Mode. Within the structure of the Planning Coordinator resides the Primitive Structure Database (PSDB) functioning to provide the primitive structures utilized by the Planning Coordinator in the establishing of error recovery or on-line path plans. This report further explores the Primitive Structure Database and establishes the potential of utilizing semantic networks as a means of efficiently storing and retrieving the Generalized Stochastic Colored Petri Nets from which the error recovery plans are derived

    Artifact Lifecycle Discovery

    Get PDF
    Artifact-centric modeling is a promising approach for modeling business processes based on the so-called business artifacts - key entities driving the company's operations and whose lifecycles define the overall business process. While artifact-centric modeling shows significant advantages, the overwhelming majority of existing process mining methods cannot be applied (directly) as they are tailored to discover monolithic process models. This paper addresses the problem by proposing a chain of methods that can be applied to discover artifact lifecycle models in Guard-Stage-Milestone notation. We decompose the problem in such a way that a wide range of existing (non-artifact-centric) process discovery and analysis methods can be reused in a flexible manner. The methods presented in this paper are implemented as software plug-ins for ProM, a generic open-source framework and architecture for implementing process mining tools

    Integration of a failure monitoring within a hybrid dynamic simulation environment

    Get PDF
    The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering

    A petri net formalization of a publish-subscribe process system.

    Get PDF
    Publish/subscribe systems are getting more and more integrated into the execution of business processes in process aware information systems. This integration enables the distribution of the process logic and increases the scalability and adaptability of the process enactment infrastructure. A consequence is however that the original specified process model doesn't accurately represent the actual running process anymore, as the publish/subscribe specific operations are not incorporated into the original model. In this paper we propose a formal model of a publish/subscribe system that can be integrated into a business process model, creating in this way an accurate representation of the actual runtime process. The resulting model can be used for model checking the executable process: inspect system properties, discover problems and validate changes.

    Dynamic state reconciliation and model-based fault detection for chemical processes

    Get PDF
    In this paper, we present a method for the fault detection based on the residual generation. The main idea is to reconstruct the outputs of the system from the measurements using the extended Kalman filter. The estimations are compared to the values of the reference model and so, deviations are interpreted as possible faults. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. The use of this method is illustrated through an application in the field of chemical processe
    • 

    corecore