8,091 research outputs found

    A future for intelligent autonomous ocean observing systems

    Get PDF
    Ocean scientists have dreamed of and recently started to realize an ocean observing revolution with autonomous observing platforms and sensors. Critical questions to be answered by such autonomous systems are where, when, and what to sample for optimal information, and how to optimally reach the sampling locations. Definitions, concepts, and progress towards answering these questions using quantitative predictions and fundamental principles are presented. Results in reachability and path planning, adaptive sampling, machine learning, and teaming machines with scientists are overviewed. The integrated use of differential equations and theory from varied disciplines is emphasized. The results provide an inference engine and knowledge base for expert autonomous observing systems. They are showcased using a set of recent at-sea campaigns and realistic simulations. Real-time experiments with identical autonomous underwater vehicles (AUVs) in the Buzzards Bay and Vineyard Sound region first show that our predicted time-optimal paths were faster than shortest distance paths. Deterministic and probabilistic reachability and path forecasts issued and validated for gliders and floats in the northern Arabian Sea are then presented. Novel Bayesian adaptive sampling for hypothesis testing and optimal learning are finally shown to forecast the observations most informative to estimate the accuracy of model formulations, the values of ecosystem parameters and dynamic fields, and the presence of Lagrangian Coherent Structures

    The ecology of seamounts: structure, function, and human impacts.

    Get PDF
    In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Science-driven Autonomous & Heterogeneous Robotic Networks: A Vision for Future Ocean Observations

    Get PDF
    The goal of this project was to develop the first algorithms that allow a heterogeneous group of oceanic robots to autonomously determine and implement sampling strategies with the help of numerical ocean forecasts and remotely-sensed observations. Two-way feedback with shore-based numerical models, tested in the field, had not previously been attempted. New planning algorithms were tested during two field programs in Monterey Bay during a 12-month period using three different types of autonomous vehicles

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment

    Get PDF
    Concerns regarding the influence of the marine environment, such as surface currents and winds, on autonomous marine vehicles have been raised in recent years. A number of researchers have been working on the development of intelligent path planning algorithms to minimise the negative effects of environmental influences, however most of this work focuses on the platform of autonomous underwater vehicles (AUVs) with very little work on unmanned surface vehicles (USVs). This paper presents a novel multi-layered fast marching (MFM) method developed to generate practical trajectories for USVs when operating in a dynamic environment. This method constructs a synthetic environment framework, which incorporates the information of planning space and surface currents. In terms of the planning space, there are repelling and attracting forces, which are evaluated using an attractive/repulsive vector field construction process. The influence of surface currents is weighted against the obstacles in the planning space using a 4-regime risk strategy. A trajectory is then calculated using the anisotropic fast marching method. The complete algorithm has been tested and validated using simulated surface currents, and the performance of generated trajectories have been evaluated in terms of different optimisation criteria, such as the distance and energy consumption

    Optimal steering for kinematic vehicles with applications to spatially distributed agents

    Get PDF
    The recent technological advances in the field of autonomous vehicles have resulted in a growing impetus for researchers to improve the current framework of mission planning and execution within both the military and civilian contexts. Many recent efforts towards this direction emphasize the importance of replacing the so-called monolithic paradigm, where a mission is planned, monitored, and controlled by a unique global decision maker, with a network centric paradigm, where the same mission related tasks are performed by networks of interacting decision makers (autonomous vehicles). The interest in applications involving teams of autonomous vehicles is expected to significantly grow in the near future as new paradigms for their use are constantly being proposed for a diverse spectrum of real world applications. One promising approach to extend available techniques for addressing problems involving a single autonomous vehicle to those involving teams of autonomous vehicles is to use the concept of Voronoi diagram as a means for reducing the complexity of the multi-vehicle problem. In particular, the Voronoi diagram provides a spatial partition of the environment the team of vehicles operate in, where each element of this partition is associated with a unique vehicle from the team. The partition induces, in turn, a graph abstraction of the operating space that is in a one-to-one correspondence with the network abstraction of the team of autonomous vehicles; a fact that can provide both conceptual and analytical advantages during mission planning and execution. In this dissertation, we propose the use of a new class of Voronoi-like partitioning schemes with respect to state-dependent proximity (pseudo-) metrics rather than the Euclidean distance or other generalized distance functions, which are typically used in the literature. An important nuance here is that, in contrast to the Euclidean distance, state-dependent metrics can succinctly capture system theoretic features of each vehicle from the team (e.g., vehicle kinematics), as well as the environment-vehicle interactions, which are induced, for example, by local winds/currents. We subsequently illustrate how the proposed concept of state-dependent Voronoi-like partition can induce local control schemes for problems involving networks of spatially distributed autonomous vehicles by examining different application scenarios.PhDCommittee Chair: Tsiotras Panagiotis; Committee Member: Egerstedt Magnus; Committee Member: Feron Eric; Committee Member: Haddad Wassim; Committee Member: Shamma Jef

    Experimental Validation Of An Integrated Guidance And Control System For Marine Surface Vessels

    Get PDF
    Autonomous operation of marine surface vessels is vital for minimizing human errors and providing efficient operations of ships under varying sea states and environmental conditions which is complicated by the highly nonlinear dynamics of marine surface vessels. To deal with modelling imprecision and unpredictable disturbances, the sliding mode methodology has been employed to devise a heading and a surge displacement controller. The implementation of such a controller necessitates the availability of all state variables of the vessel. However, the measured signals in the current study are limited to the global X and Y positioning coordinates of the boat that are generated by a GPS system. Thus, a nonlinear observer, based on the sliding mode methodology, has been implemented to yield accurate estimates of the state variables in the presence of both structured and unstructured uncertainties. Successful autonomous operation of a marine surface vessel requires a holistic approach encompassing a navigation system, robust nonlinear controllers and observers. Since the overwhelming majority of the experimental work on autonomous marine surface vessels was not conducted in truly uncontrolled real-world environments. The first goal of this work was to experimentally validate a fully-integrated LOS guidance system with a sliding mode controller and observer using a 16’ Tracker Pro Guide V-16 aluminium boat with a 60 hp. Mercury outboard motor operating in the uncontrolled open-water environment of Lake St. Clair, Michigan. The fully integrated guidance and controller-observer system was tested in a model-less configuration, whereby all information provided from the vessel’s nominal model have been ignored. The experimental data serves to demonstrate the robustness and good tracking characteristics of the fully-integrated guidance and controller/observer system by overcoming the large errors induced at the beginning of each segment and converging the boat to the desired trajectory in spite of the presence of environmental disturbances. The second focus of this work was to combine a collision avoidance method with the guidance system that accounted for “International Regulations for Prevention of Collisions at Sea” abbreviated as COLREGS. This new system then needed to be added into the existing architecture. The velocity obstacles method was selected as the base to build upon and additional restrictions were incorporated to account for these additional rules. This completed system was then validated with a software in the loop simulation
    corecore