394 research outputs found

    A local Rayleigh model with spatial scale selection for ultrasound image segmentation

    Full text link

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume

    Computer Vision Techniques for Transcatheter Intervention

    Get PDF
    Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and treatment of cardiovascular diseases. For example, TAVI is an alternative to AVR for the treatment of severe aortic stenosis and TAFA is widely used for the treatment and cure of atrial fibrillation. In addition, catheter-based IVUS and OCT imaging of coronary arteries provides important information about the coronary lumen, wall and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial for the evaluation and treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation, motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods.We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence it is important to understand the application domain, clinical background, and imaging modality so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on background information of transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area

    Computer-based estimation of circulating blood volume from ultrasound imagery

    Get PDF
    Detection of relative changes in circulating blood volume is important to guide resuscitation and manage a variety of medical conditions including sepsis, trauma, dialysis and congestive heart failure. In recent years, ultrasound images of inferior vena cava (IVC) and internal jugular vein (IJV) have been used to assess volume status and guide fluid administration. This approach has limitations in that a skilled operator must perform repeated measurements over time. In this dissertation, we develop semi-automatic image processing algorithms for estimation and tracking of the IVC anterior-posterior (AP)-diameter and IJV crosssectional area in ultrasound videos. The proposed algorithms are based on active contours (ACs), where either the IVC AP-diameter or IJV CSA is estimated by minimization of an energy functional. More specifically, in chapter 2, we propose a novel energy functional based on the third centralized moment and show that it outperforms the functionals that are traditionally used with active contours (ACs). We combine the proposed functional with the polar contour representation and use it for segmentation of the IVC. In chapters 3 and 4, we propose active shape models based on ellipse; circle; and rectangles fitted inside the IVC as efficient, consistent and novel approaches to tracking and approximating the anterior-posterior (AP)-diameter even in the context of poor quality images. The proposed algorithms are based on a novel heuristic evolution functional that works very well with ultrasound images. In chapter 3, we show that the proposed active circle algorithm accurately, estimates the IVC AP-diameter. Although the estimated AP-diameter is very close to its actual value, the clinicians define the IVC AP-diameter as the largest vertical diameter of the IVC contour which deviates from its actual definition. To solve this problem and estimate the AP-diameter in the same way as its clinical definition, in chapter 4, we propose the active rectangle algorithm, where clinically measured AP-diameter is modeled as the height of a vertical thin rectangle. The results show that the AP-diameter estimated by the active rectangle algorithm is closer to its clinically measurement than the active circle and active ellipse algorithms. In chapter 5, we propose a novel adaptive polar active contour (Ad-PAC) algorithm for the segmentation and tracking of the IJV in ultrasound videos. In the proposed algorithm, the parameters of the Ad-PAC algorithm are adapted based on the results of segmentation in previous frames. The Ad-PAC algorithm has been applied to 65 ultrasound videos and shown to be a significant improvement over existing segmentation algorithms. So far, all proposed algorithms are semi-automatic as they need an operator to either locate the vessel in the first frame, or manually segment the first first and work automatically for the next frames. In chapter 6, we proposed a novel algorithm to automatically locate the vessel in ultrasound videos. The proposed algorithm is based on convolutional neural networks (CNNs) and is trained and applied for IJV videos. In this chapter we show that although the proposed algorithm is trained for data acquired from healthy subjects, it works efficiently for the data collected from coronary heart failure (CHF) patients without additional training. Finally, conclusions are drawn and possible extensions are discussed in chapter 7

    Contributions à la segmentation d'image : phase locale et modèles statistiques

    Get PDF
    Ce document presente une synthèse de mes travaux apres these, principalement sur la problematique de la segmentation d’images

    Image segmentation and reconstruction of 3D surfaces from carotid ultrasound images

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    • …
    corecore