295 research outputs found

    An artifacts removal post-processing for epiphyseal region-of-interest (EROI) localization in automated bone age assessment (BAA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction.</p> <p>Methods</p> <p>A proposed method with anisotropic diffusion as pre-processing and a novel Bounded Area Elimination (BAE) post-processing algorithm to improve the algorithm of ossification site localization technique are designed with the intent of improving the adaptive segmentation result and the region-of interest (ROI) localization accuracy.</p> <p>Results</p> <p>The results are then evaluated by quantitative analysis and qualitative analysis using texture feature evaluation. The result indicates that the image homogeneity after anisotropic diffusion has improved averagely on each age group for 17.59%. Results of experiments showed that the smoothness has been improved averagely 35% after BAE algorithm and the improvement of ROI localization has improved for averagely 8.19%. The MSSIM has improved averagely 10.49% after performing the BAE algorithm on the adaptive segmented hand radiograph.</p> <p>Conclusions</p> <p>The result indicated that hand radiographs which have undergone anisotropic diffusion have greatly reduced the noise in the segmented image and the result as well indicated that the BAE algorithm proposed is capable of removing the artifacts generated in adaptive segmentation.</p

    Machine Vision Application For Automatic Defect Segmentation In Weld Radiographs

    Get PDF
    Objektif penyelidikan ini adalah untuk membangunkan satu kaedah peruasan kecacatan kimpalan automatik yang boleh meruas pelbagai jenis kecacatan kimpalan yang wujud dalam imej radiografi kimpalan. Kaedah segmentasi kecacatan automatik yang dibangunkan terdir:i daripada tiga algoritma utama, iaitu algoritma penyingkiran label, algoritma pengenalpastian bahagian kimpalan dan algoritma segmentasi kecacatan kimpalan. Algoritma penyingkiran label dibangunkan untuk mengenalpasti dan menyingkirkan label yang terdapat pada imej radiograf kimpalan secara automatik, sebelum algoritma pengenalpastian bahagian kimpalan dan algortima segmentasi kecacatan diaplikasikan ke atas imej radiografi. Satu algoritma pengenalpastian bahagian kimpalan juga dibangunkan dengan tujuan mengenalpasti bahagian kimpalan dalam imej radiogaf secara automatik dengan menggunakan profil keamatan yang diperoleh daripada imej radiografi. The objective of the research is to develop an automatic weld defect segmentation methodology to segment different types of defects in radiographic images of welds. The segmentation methodology consists of three main algorithms. namely label removal algorithm. weld extraction algorithm and defect segmentation algorithm. The label removal algorithm was developed to detect and remove labels that are printed on weld radiographs automatically before weld extraction algorithm and defect detection algorithm are applied. The weld extraction algorithm was developed to locate and extract welds automatically from the intensity profiles taken across the image by using graphical analysis. This algorithm was able to extract weld from a radiograph regardless of whether the intensity profile is Gaussian or otherwise. This method is an improvement compared to the previous weld extraction methods which are limited to weld image with Gaussian intensity profiles. Finally. a defect segmentation algorithm was developed to segment the defects automatically from the image using background subtraction and rank leveling method

    Computer-aided diagnosis of complications of total hip replacement X-ray images

    Get PDF
    Hip replacement surgery has experienced a dramatic evolution in recent years supported by the latest developments in many areas of technology and surgical procedures. Unfortunately complications that follow hip replacement surgery remains the most challenging dilemma faced both by the patients and medical experts. The thesis presents a novel approach to segment the prosthesis of a THR surgical process by using an Active Contour Model (ACM) that is initiated via an automatically detected seed point within the enarthrosis region of the prosthesis. The circular area is detected via the use of a Fast, Randomized Circle Detection Algorithm. Experimental results are provided to compare the performance of the proposed ACM based approach to popular thresholding based approaches. Further an approach to automatically detect the Obturator Foramen using an ACM approach is also presented. Based on analysis of how medical experts carry out the detection of loosening and subsidence of a prosthesis and the presence of infections around the prosthesis area, this thesis presents novel computational analysis concepts to identify the key feature points of the prosthesis that are required to detect all of the above three types of complications. Initially key points along the prosthesis boundary are determined by measuring the curvature on the surface of the prosthesis. By traversing the edge pixels, starting from one end of the boundary of a detected prosthesis, the curvature values are determined and effectively used to determine key points of the prosthesis surface and their relative positioning. After the key-points are detected, pixel value gradients across the boundary of the prosthesis are determined along the boundary of the prosthesis to determine the presence of subsidence, loosening and infections. Experimental results and analysis are presented to show that the presence of subsidence is determined by the identification of dark pixels around the convex bend closest to the stem area of the prosthesis and away from it. The presence of loosening is determined by the additional presence of dark regions just outside the two straight line edges of the stem area of the prosthesis. The presence of infections is represented by the determination of dark areas around the tip of the stem of the prosthesis. All three complications are thus determined by a single process where the detailed analysis defer. The experimental results presented show the effectiveness of all proposed approaches which are also compared and validated against the ground truth recorded manually with expert user input

    Novel Techniques for Automated Dental Identification

    Get PDF
    Automated dental identification is one of the best candidates for postmortem identification. With the large number of victims encountered in mass disasters, automating the process of postmortem identification is receiving an increased attention. This dissertation introduces new approaches for different stages of Automated Dental Identification system: These stages include segmentations, classification, labeling, and matching:;We modified the seam carving technique to adapt the problem of segmenting dental image records into individual teeth. We propose a two-stage teeth segmentation approach for segmenting the dental images. In the first stage, the teeth images are preprocessed by a two-step thresholding technique, which starts with an iterative thresholding followed by an adaptive thresholding to binarize the teeth images. In the second stage, we adapt the seam carving technique on the binary images, using both horizontal and vertical seams, to separate each individual tooth. We have obtained an optimality rate of 54.02% for the bitewing type images, which is superior to all existing fully automated dental segmentation algorithms in the literature, and a failure rate of 1.05%. For the periapical type images, we have obtained a high optimality rate of 58.13% and a low failure rate of 0.74 which also surpasses the performance of existing techniques. An important problem in automated dental identification is automatic classification of teeth into four classes (molars, premolars, canines, and incisors). A dental chart is a key to avoiding illogical comparisons that inefficiently consume the limited computational resources, and may mislead decision-making. We tackle this composite problem using a two-stage approach. The first stage, utilizes low computational-cost, appearance-based features, using Orthogonal Locality Preserving Projections (OLPP) for assigning an initial class. The second stage applies a string matching technique, based on teeth neighborhood rules, to validate initial teeth-classes and hence to assign each tooth a number corresponding to its location in the dental chart, even in the presence of a missed tooth. The experimental results of teeth classification show that on a large dataset of bitewing and periapical films, the proposed approach achieves overall classification accuracy of 77% and teeth class validation enhances the overall teeth classification accuracy to 87% which is slightly better than the performance obtained from previous methods based on EigenTeeth the performance of which is 75% and 86%, respectively.;We present a new technique that searches the dental database to find a candidate list. We use dental records of the FBI\u27s Criminal Justice Service (CJIC) ADIS database, that contains 104 records (about 500 bitewing and periapical films) involving more than 2000 teeth, 47 Antemortem (AM) records and 57 Postmortem (PM) records with 20 matched records.;The proposed approach consists of two main stages, the first stage is to preprocess the dental records (segmentation and teeth labeling classification) in order to get a reliable, appearance-based, low computational-cost feature. In the second stage, we developed a technique based on LaplacianTeeth using OLPP algorithm to produce a candidate list. The proposed technique can correctly retrieve the dental records 65% in the 5 top ranks while the method based on EigenTeeth remains at 60%. The proposed approach takes about 0.17 seconds to make record to record comparison while the other method based on EigenTeeth takes about 0.09 seconds.;Finally, we address the teeth matching problem by presenting a new technique for dental record retrieval. The technique is based on the matching of the Scale Invariant feature Transform (SIFT) descriptors guided by the teeth contour between the subject and reference dental records. Our fundamental objective is to accomplish a relatively short match list, with a high probability of having the correct match reference. The proposed technique correctly retrieves the dental records with performance rates of 35% and 75% in the 1 and 5 top ranks respectively, and takes only an average time of 4.18 minutes to retrieve a match list. This compares favorably with the existing technique shape-based (edge direction histogram) method which has the performance rates of 29% and 46% in the 1 and 5 top ranks respectively.;In summary, the proposed ADIS system accurately retrieves the dental record with an overall rate of 80% in top 5 ranks when a candidate list of 20 is used (from potential match search) whereas a candidate size of 10 yields an overall rate of 84% in top 5 ranks and takes only a few minutes to search the database, which compares favorably against most of the existing methods in the literature, when both accuracy and computational complexity are considered

    Predictive Modelling of Bone Ageing

    Get PDF
    Bone age assessment (BAA) is a task performed daily by paediatricians in hospitalsworldwide. The main reasons for BAA to be performed are: fi�rstly, diagnosis of growth disorders through monitoring skeletal development; secondly, prediction of final adult height; and fi�nally, verifi�cation of age claims. Manually predicting bone age from radiographs is a di�fficult and time consuming task. This thesis investigates bone age assessment and why automating the process will help. A review of previous automated bone age assessment systems is undertaken and we investigate why none of these systems have gained widespread acceptance. We propose a new automated method for bone age assessment, ASMA (Automated Skeletal Maturity Assessment). The basic premise of the approach is to automatically extract descriptive shape features that capture the human expertise in forming bone age estimates. The algorithm consists of the following six modularised stages: hand segmentation; hand segmentation classifi�cation; bone segmentation; feature extraction; bone segmentation classifi�cation; bone age prediction. We demonstrate that ASMA performs at least as well as other automated systems and that models constructed on just three bones are as accurate at predicting age as expert human assessors using the standard technique. We also investigate the importance of ethnicity and gender in skeletal development. Our conclusion is that the feature based system of separating the image processing from the age modelling is the best approach, since it off�ers flexibility and transparency, and produces accurate estimates

    Mini Kirsch Edge Detection and Its Sharpening Effect

    Get PDF
    In computer vision, edge detection is a crucial step in identifying the objects’ boundaries in an image. The existing edge detection methods function in either spatial domain or frequency domain, fail to outline the high continuity boundaries of the objects. In this work, we modified four-directional mini Kirsch edge detection kernels which enable full directional edge detection. We also introduced the novel involvement of the proposed method in image sharpening by adding the resulting edge map onto the original input image to enhance the edge details in the image. From the edge detection performance tests, our proposed method acquired the highest true edge pixels and true non-edge pixels detection, yielding the highest accuracy among all the comparing methods. Moreover, the sharpening effect offered by our proposed framework could achieve a more favorable visual appearance with a competitive score of peak signal-to-noise ratio and structural similarity index value compared to the most widely used unsharp masking and Laplacian of Gaussian sharpening methods.  The edges of the sharpened image are further enhanced could potentially contribute to better boundary tracking and higher segmentation accuracy

    An Adaptive Algorithm to Identify Ambiguous Prostate Capsule Boundary Lines for Three-Dimensional Reconstruction and Quantitation

    Get PDF
    Currently there are few parameters that are used to compare the efficiency of different methods of cancerous prostate surgical removal. An accurate assessment of the percentage and depth of extra-capsular soft tissue removed with the prostate by the various surgical techniques can help surgeons determine the appropriateness of surgical approaches. Additionally, an objective assessment can allow a particular surgeon to compare individual performance against a standard. In order to facilitate 3D reconstruction and objective analysis and thus provide more accurate quantitation results when analyzing specimens, it is essential to automatically identify the capsule line that separates the prostate gland tissue from its extra-capsular tissue. However the prostate capsule is sometimes unrecognizable due to the naturally occurring intrusion of muscle and connective tissue into the prostate gland. At these regions where the capsule disappears, its contour can be arbitrarily reconstructed by drawing a continuing contour line based on the natural shape of the prostate gland. Presented here is a mathematical model that can be used in deciding the missing part of the capsule. This model approximates the missing parts of the capsule where it disappears to a standard shape by using a Generalized Hough Transform (GHT) approach to detect the prostate capsule. We also present an algorithm based on a least squares curve fitting technique that uses a prostate shape equation to merge previously detected capsule parts with the curve equation to produce an approximated curve that represents the prostate capsule. We have tested our algorithms using three shapes on 13 prostate slices that are cut at different locations from the apex and the results are promisin

    Towards Automated Human Identification Using Dental X-ray Images

    Get PDF
    Masteroppgave informasjons- og kommunikasjonsteknologi - Universitetet i Agder, 2015Systems for automated human identification from dental X-ray images can be used to greatly reduce the necessary effort spent today by dental forensics experts. In this work a new methodology is proposed to create a system for automated dental X-ray identification. The methodology includes both state-of-the-art methods and a novel method for separating a dental X-ray image into individual teeth. The novel method is based on lowest cost pathfinding and is shown to achieve comparable results to the state-of-the-art. In experiments it is able to separate 88.7% of the teeth in the test images correctly. The identification system extracts tooth and dental work contours from the dental X-ray images and uses the Hausdorff-distance measure for ranking persons. The results of testing the system on a new data set show that the new method for dental X-ray separation functions well as a component in a functional identification system and that the methodology on the whole can be used to identify persons with comparable accuracy to related work. In 86% of cases, the correct person is ranked highest. This accuracy increases to 94% when the five highest ranked images are considered. Due to small distances in similarity between highest ranked individuals, doubts are raised concerning the scalability of the method. This is seen as a matter of expansion, such as refining features, rather than redesign. The conclusion is that the proposed methodology, including the path-based method of separation, performs well enough to be worth consideration when designing an automated dental identification system

    Analyzing fibrous tissue pattern in fibrous dysplasia bone images using deep R-CNN networks for segmentation

    Get PDF
    Predictive health monitoring systems help to detect human health threats in the early stage. Evolving deep learning techniques in medical image analysis results in efficient feedback in quick time. Fibrous dysplasia (FD) is a genetic disorder, triggered by the mutation in Guanine Nucleotide binding protein with alpha stimulatory activities in the human bone genesis. It slowly occupies the bone marrow and converts the bone cell into fibrous tissues. It weakens the bone structure and leads to permanent disability. This paper proposes the study of FD bone image analyzing techniques with deep networks. Also, the linear regression model is annotated for predicting the bone abnormality levels with observed coefficients. Modern image processing begins with various image filters. It describes the edges, shades, texture values of the receptive field. Different types of segmentation and edge detection mechanisms are applied to locate the tumor, lesion, and fibrous tissues in the bone image. Extract the fibrous region in the bone image using the region-based convolutional neural network algorithm. The segmented results are compared with their accuracy metrics. The segmentation loss is reduced by each iteration. The overall loss is 0.24% and the accuracy is 99%, segmenting the masked region produces 98% of accuracy, and building the bounding boxes is 99% of accuracy
    corecore