13,556 research outputs found

    Globally Optimal Surfaces By Continuous Maximal Flows

    Get PDF
    In this paper we consider the problem of computing globally minimal continuous curves and surfaces for image segmentation and 3D reconstruction. This is solved using a maximal flow approach expressed as a PDE model. Previously proposed techniques yield either grid-biased solutions (graph based approaches) or sub-optimal solutions (active contours and surfaces). The proposed algorithm simulates the flow of an ideal fluid with a spatially varying velocity constraint derived from image data. A proof is given that the algorithm gives the globally maximal flow at convergence, along with an implementation scheme. The globally minimal surface may be obtained trivially from its output. The new algorithm is applied to segmentation in 2D and 3D medical images and to 3D reconstruction from a stereo image pair. The results in 2D agree remarkably well with an existing planar minimal contour algorithm and the results in 3D segmentation and reconstruction demonstrate that the new algorithm is free from grid bias

    Globally minimal surfaces by continuous maximal flows

    Get PDF
    In this paper we address the computation of globally minimal curves and surfaces for image segmentation and stereo reconstruction. We present a solution, simulating a continuous maximal flow by a novel system of partial differential equations. Existing methods are either grid-biased (graph-based methods) or sub-optimal (active contours and surfaces). The solution simulates the flow of an ideal fluid with isotropic velocity constraints. Velocity constraints are defined by a metric derived from image data. An auxiliary potential function is introduced to create a system of partial differential equations. It is proven that the algorithm produces a globally maximal continuous flow at convergence, and that the globally minimal surface may be obtained trivially from the auxiliary potential. The bias of minimal surface methods toward small objects is also addressed. An efficient implementation is given for the flow simulation. The globally minimal surface algorithm is applied to segmentation in 2D and 3D as well as to stereo matching. Results in 2D agree with an existing minimal contour algorithm for planar images. Results in 3D segmentation and stereo matching demonstrate that the new algorithm is robust and free from grid bias

    Segmentation of Three-dimensional Images with Parametric Active Surfaces and Topology Changes

    Get PDF
    In this paper, we introduce a novel parametric method for segmentation of three-dimensional images. We consider a piecewise constant version of the Mumford-Shah and the Chan-Vese functionals and perform a region-based segmentation of 3D image data. An evolution law is derived from energy minimization problems which push the surfaces to the boundaries of 3D objects in the image. We propose a parametric scheme which describes the evolution of parametric surfaces. An efficient finite element scheme is proposed for a numerical approximation of the evolution equations. Since standard parametric methods cannot handle topology changes automatically, an efficient method is presented to detect, identify and perform changes in the topology of the surfaces. One main focus of this paper are the algorithmic details to handle topology changes like splitting and merging of surfaces and change of the genus of a surface. Different artificial images are studied to demonstrate the ability to detect the different types of topology changes. Finally, the parametric method is applied to segmentation of medical 3D images

    Segmentation and Restoration of Images on Surfaces by Parametric Active Contours with Topology Changes

    Full text link
    In this article, a new method for segmentation and restoration of images on two-dimensional surfaces is given. Active contour models for image segmentation are extended to images on surfaces. The evolving curves on the surfaces are mathematically described using a parametric approach. For image restoration, a diffusion equation with Neumann boundary conditions is solved in a postprocessing step in the individual regions. Numerical schemes are presented which allow to efficiently compute segmentations and denoised versions of images on surfaces. Also topology changes of the evolving curves are detected and performed using a fast sub-routine. Finally, several experiments are presented where the developed methods are applied on different artificial and real images defined on different surfaces

    Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation

    Get PDF
    This paper presents a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. In biological tissues, such as the human brain, neighboring structures exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We present a set of 2D and 3D experiments as well as a quantitative performance analysis. In addition, we perform a comparison to several existent segmentation methods and demonstrate the improvements provided by our approach in terms of segmentation accuracy
    corecore