55 research outputs found

    Autonomous active exploration for tactile sensing in robotics

    Get PDF
    The sense of touch permits humans to directly touch, feel and perceive the state of their surrounding environment. For an exploration task, humans normally reduce uncertainty by actively moving their hands and fingers towards more interesting locations. This active exploration is a sophisticated procedure that involves sensing and perception processes. In robotics, the sense of touch also plays an important role for the development of intelligent systems capable to safely explore and interact with their environment. However, robust and accurate sensing and perception methods, crucial to exploit the benefits offered by the sense of touch, still represents a major research challenge in the field of robotics. A novel method for sensing and perception in robotics using the sense of touch is developed in this research work. This novel active Bayesian perception method, biologically inspired by humans, demonstrates its superiority over passive perception modality, achieving accurate tactile perception with a biomimetic fingertip sensor. The accurate results are accomplished by the accumulation of evidence through the interaction with the environment, and by actively moving the biomimetic fingertip sensor towards better locations to improve perception as humans do. A contour following exploration, commonly used by humans to extract object shape, was used to validate the proposed method using simulated and real objects. The exploration procedure demonstrated the ability of the tactile sensor to autonomously interact, performing active movements to improve the perception from the contour of the objects being explored, in a natural way as humans do. An investigation of the effects on the perception and decisions taken by the combination of the experience acquired along an exploration task with the active Bayesian perception process is also presented. This investigation, based on two novel sensorimotor control strategies (SMC1 and SMC2), was able to improve the performance in speed and accuracy of the exploration task. To exploit the benefits of the control strategies in a realistic exploration, the learning of a forward model and confidence factor was needed. For that reason, a novel method based on the combination of Predicted Information Gain (PIG) and Dynamic Bayesian Networks (DBN) permitted to achieve an online and adaptive learning of the forward model and confidence factor, allowing to improve the performance of the exploration task for both sensorimotor control strategies. Overall, the novel methods presented in this thesis, validated in simulated and real environments, demonstrated to be robust, accurate and suitable for robots to perform autonomous active perception and exploration using the sense touch

    Exploratory Tactile Servoing With Active Touch

    Get PDF

    Active touch for robust perception under position uncertainty

    Get PDF
    In this paper, we propose that active perception will help attain autonomous robotics in unstructured environments by giving robust perception. We test this claim with a biomimetic fingertip that senses surface texture under a range of contact depths. We compare the performance of passive Bayesian perception with a novel approach for active perception that includes a sensorimotor loop for controlling sensor position. Passive perception at a single depth gave poor results, with just 0.2mm uncertainty impairing performance. Extending passive perception over a range of depths gave non-robust performance. Only active perception could give robust, accurate performance, with the sensorimotor feedback compensating the position uncertainty. We expect that these results will extend to other stimuli, so that active perception will offer a general approach to robust perception in unstructured environments

    Active Bayesian perception and reinforcement learning

    Get PDF
    In a series of papers, we have formalized an active Bayesian perception approach for robotics based on recent progress in understanding animal perception. However, an issue for applied robot perception is how to tune this method to a task, using: (i) a belief threshold that adjusts the speed-accuracy tradeoff; and (ii) an active control strategy for relocating the sensor e.g. to a preset fixation point. Here we propose that these two variables should be learnt by reinforcement from a reward signal evaluating the decision outcome. We test this claim with a biomimetic fingertip that senses surface curvature under uncertainty about contact location. Appropriate formulation of the problem allows use of multi-armed bandit methods to optimize the threshold and fixation point of the active perception. In consequence, the system learns to balance speed versus accuracy and sets the fixation point to optimize both quantities. Although we consider one example in robot touch, we expect that the underlying principles have general applicability

    Exploiting Sensor Symmetry for Generalized Tactile Perception in Biomimetic Touch

    Get PDF

    Feeling the Shape: Active Exploration Behaviors for Object Recognition With a Robotic Hand

    Get PDF
    Autonomous exploration in robotics is a crucial feature to achieve robust and safe systems capable to interact with and recognize their surrounding environment. In this paper, we present a method for object recognition using a three-fingered robotic hand actively exploring interesting object locations to reduce uncertainty. We present a novel probabilistic perception approach with a Bayesian formulation to iteratively accumulate evidence from robot touch. Exploration of better locations for perception is performed by familiarity and novelty exploration behaviors, which intelligently control the robot hand to move toward locations with low and high levels of interestingness, respectively. These are active behaviors that, similar to the exploratory procedures observed in humans, allow robots to autonomously explore locations they believe that contain interesting information for recognition. Active behaviors are validated with object recognition experiments in both offline and real-time modes. Furthermore, the effects of inhibiting the active behaviors are analyzed with a passive exploration strategy. The results from the experiments demonstrate the accuracy of our proposed methods, but also their benefits for active robot control to intelligently explore and interact with the environment
    • …
    corecore