19,562 research outputs found

    Toward End-to-End, Full-Stack 6G Terahertz Networks

    Full text link
    Recent evolutions in semiconductors have brought the terahertz band in the spotlight as an enabler for terabit-per-second communications in 6G networks. Most of the research so far, however, has focused on understanding the physics of terahertz devices, circuitry and propagation, and on studying physical layer solutions. However, integrating this technology in complex mobile networks requires a proper design of the full communication stack, to address link- and system-level challenges related to network setup, management, coordination, energy efficiency, and end-to-end connectivity. This paper provides an overview of the issues that need to be overcome to introduce the terahertz spectrum in mobile networks, from a MAC, network and transport layer perspective, with considerations on the performance of end-to-end data flows on terahertz connections.Comment: Published on IEEE Communications Magazine, THz Communications: A Catalyst for the Wireless Future, 7 pages, 6 figure

    On Capacity and Delay of Multi-channel Wireless Networks with Infrastructure Support

    Full text link
    In this paper, we propose a novel multi-channel network with infrastructure support, called an MC-IS network, which has not been studied in the literature. To the best of our knowledge, we are the first to study such an MC-IS network. Our proposed MC-IS network has a number of advantages over three existing conventional networks, namely a single-channel wireless ad hoc network (called an SC-AH network), a multi-channel wireless ad hoc network (called an MC-AH network) and a single-channel network with infrastructure support (called an SC-IS network). In particular, the network capacity of our proposed MC-IS network is nlogn\sqrt{n \log n} times higher than that of an SC-AH network and an MC-AH network and the same as that of an SC-IS network, where nn is the number of nodes in the network. The average delay of our MC-IS network is logn/n\sqrt{\log n/n} times lower than that of an SC-AH network and an MC-AH network, and min{CI,m}\min\{C_I,m\} times lower than the average delay of an SC-IS network, where CIC_I and mm denote the number of channels dedicated for infrastructure communications and the number of interfaces mounted at each infrastructure node, respectively. Our analysis on an MC-IS network equipped with omni-directional antennas only has been extended to an MC-IS network equipped with directional antennas only, which are named as an MC-IS-DA network. We show that an MC-IS-DA network has an even lower delay of c2πθCI\frac{c}{\lfloor \frac{2\pi}{\theta}\rfloor \cdot C_I} compared with an SC-IS network and our MC-IS network. For example, when CI=12C_I=12 and θ=π12\theta=\frac{\pi}{12}, an MC-IS-DA network can further reduce the delay by 24 times lower that of an MC-IS network and reduce the delay by 288 times lower than that of an SC-IS network.Comment: accepted, IEEE Transactions on Vehicular Technology, 201

    Denial of service attacks and challenges in broadband wireless networks

    Get PDF
    Broadband wireless networks are providing internet and related services to end users. The three most important broadband wireless technologies are IEEE 802.11, IEEE 802.16, and Wireless Mesh Network (WMN). Security attacks and vulnerabilities vary amongst these broadband wireless networks because of differences in topologies, network operations and physical setups. Amongst the various security risks, Denial of Service (DoS) attack is the most severe security threat, as DoS can compromise the availability and integrity of broadband wireless network. In this paper, we present DoS attack issues in broadband wireless networks, along with possible defenses and future directions

    Multi-channel Wireless Networks with Infrastructure Support: Capacity and Delay

    Full text link
    In this paper, we propose a novel multi-channel network with infrastructure support, called an \textit{MC-IS} network, which has not been studied in the literature. To the best of our knowledge, we are the first to study such an \textit{MC-IS} network. Our \textit{MC-IS} network is equipped with a number of infrastructure nodes which can communicate with common nodes using a number of channels where a communication between a common node and an infrastructure node is called an infrastructure communication and a communication between two common nodes is called an ad-hoc communication. Our proposed \textit{MC-IS} network has a number of advantages over three existing conventional networks, namely a single-channel wireless ad hoc network (called an \textit{SC-AH} network), a multi-channel wireless ad hoc network (called an \textit{MC-AH} network) and a single-channel network with infrastructure support (called an \textit{SC-IS} network). In particular, the \textit{network capacity} of our proposed \textit{MC-IS} network is nlogn\sqrt{n \log n} times higher than that of an \textit{SC-AH} network and an \textit{MC-AH} network and the same as that of an \textit{SC-IS} network, where nn is the number of nodes in the network. The \textit{average delay} of our \textit{MC-IS} network is logn/n\sqrt{\log n/n} times lower than that of an \textit{SC-AH} network and an \textit{MC-AH} network, and min(CI,m)\min(C_I,m) times lower than the average delay of an \textit{SC-IS} network, where CIC_I and mm denote the number of channels dedicated for infrastructure communications and the number of interfaces mounted at each infrastructure node, respectively.Comment: 12 pages, 6 figures, 3 table
    corecore