128,301 research outputs found

    Active beamforming network design

    Get PDF
    This paper describe the design and implementation of multi beam antenna array using active beam forming network for wireless local area networks (WLAN) operating at 2.4 GHz band frequency. In this paper, four beam patterns generated by incorporated a rectangular patch antenna array with active beam forming network using switch line phase shifter. The radiation patterns measurement of multibeam antenna using active beam forming is compared with passive beam forming network using butler matrix. It shows that the multibeam antenna can be produced using this active beam forming network by switching the RF diode towards the required phase shift of the circuit. The comparison between active and passive beamforming have been made and discuss

    An active wearable dual-band antenna for GPS and Iridium satellite phone deployed in a rescue worker garment

    Get PDF
    An active wearable dual-band circularly polarized microstrip patch antenna for Global Positioning System and Iridium satellite phone applications is presented. It is constructed using flexible foam and fabric substrates, combined with copper-on-polyimide film conductors. A low-noise amplifier chip is integrated directly underneath the antenna patch. The antenna's performance is examined under bending and on-body conditions. The active antenna gain is higher than 25 dBi and the 3dB axial ratio bandwidth exceeds 183 MHz in free-space conditions. The antenna performance is robust to bending and on-body placement

    Planar dielectric resonator stabilized HEMT oscillator integrated with CPW/aperture coupled patch antenna

    Get PDF
    A new design of an active antenna with a dielectric resonator stabilized high electron mobility transistor (HEMT) oscillator (DRO) and an aperture-coupled patch antenna is reported. The circuit is fabricated using coplanar waveguide (CPW) with the oscillator and the antenna on opposite sides of the substrate. The active antenna was demonstrated at 7.6 GHz; however, the design can be scaled to higher frequencies. Excellent oscillator characteristics and radiation patterns were obtained

    Active textile antennas in professional garments for sensing, localisation and communication

    Get PDF
    New wireless wearable monitoring systems integrated in professional garments require a high degree of reliability and autonomy. Active textile antenna systems may serve as platforms for body-centric sensing, localisation, and wireless communication systems, in the meanwhile being comfortable and invisible to the wearer. We present a new dedicated comprehensive design paradigm and combine this with adapted signal-processing techniques that greatly enhance the robustness and the autonomy of these systems. On the one hand, the large amount of real estate available in professional rescue worker garments may be exploited to deploy multiple textile antennas. On the other hand, the size of each radiator may be designed large enough to ensure high radiation efficiency when deployed on the body. This antenna area is then reused by placing active electronics directly underneath and energy harvesters directly on top of the antenna patch. We illustrate this design paradigm by means of recent textile antenna prototypes integrated in professional garments, providing sensing, positioning, and communication capabilities. In particular, a novel wearable active Galileo E1-band antenna is presented and fully characterized, including noise figure, and linearity performance

    A multi band mini printed omni directional antenna with v-shaped for RFID applications

    Get PDF
    This paper presents a mini multi-band printed omni-directional antenna with v-shaped structure for radio frequency identification (RFID) applications. The proposed multi-band antenna is developed from the initial v-shaped design which is only capable of working as a single-band antenna. By deploying a concept of dipole antenna to an initial design, the proposed antenna is accomplished to operate with two different modes of RFID system which are passive and active modes at frequencies of 915MHz and 2.45 GHz respectively. The passive RFID tag is invented when a chip of Ultra High Frequency (UHF) is integrated with a proposed multi-band antenna. This passive tag, which is able to radiate with the measured signal strength, shows that the reading ranges are boosted almost two times compared to the conventional inlay antenna. The maximum reading range of passive RFID tag with inlay antenna is 5 m, though a reading range up to 10m is achievable through the deployment of the proposed antenna at a measurement field. Implicitly, the measurements carried out on the antenna are in good agreement with the simulated values. Moreover, the size of the mobile passive RFID tag has been substantially as 100mm × 70 mm, even though the antenna is fabricated with an inexpensive FR-4 substrate material. With the reasonable gain, coupled with cheaper material and smaller size, the proposed antenna has attractive potentials for use in RFID applications with multiple frequency antenna for active and passive tags

    Active textile antennas in professional garments for sensing, localisation and communication

    Get PDF
    New wireless wearable monitoring systems integrated in professional garments require a high degree of reliability and autonomy. Active textile antenna systems may serve as platforms for body-centric sensing, localization and wireless communication systems, in the meanwhile being comfortable and invisible to the wearer. New design strategies combined with dedicated signal processing techniques greatly enhance the robustness of these systems. On the one hand, the large amount of real estate available in public regulated services' garments may be exploited to deploy multiple textile antennas. On the other hand, the size of each radiator may be designed large enough to ensure high radiation efficiency when deployed on the body. This antenna area is then reused by placing active electronics directly underneath and energy harvesters directly on top of the antenna patch. We illustrate this design paradigm by means recent textile antenna prototypes integrated in professional garments, providing sensing, positioning and communication capabilities

    Electromechanically Tunable Suspended Optical Nano-antenna

    Full text link
    Coupling mechanical degrees of freedom with plasmonic resonances has potential applications in optomechanics, sensing, and active plasmonics. Here we demonstrate a suspended two-wire plasmonic nano-antenna acting like a nano-electrometer. The antenna wires are supported and electrically connected via thin leads without disturbing the antenna resonance. As a voltage is applied, equal charges are induced on both antenna wires. The resulting equilibrium between the repulsive Coulomb force and the restoring elastic bending force enables us to precisely control the gap size. As a result the resonance wavelength and the field enhancement of the suspended optical nano-antenna (SONA) can be reversibly tuned. Our experiments highlight the potential to realize large bandwidth optical nanoelectromechanical systems (NEMS)

    Active zone self-similarity of fractal sierpinski antenna verified using infra-red thermograms

    Get PDF
    The surface current distribution of a Sierpinski fractal antenna shows a self-similar behaviour determined by the self-similar properties of its geometry. The application of infra-red thermography to electromagnetic near field detection allows the experimental verification of the active region scaling of a fractal antenna operating at different bands.Peer ReviewedPostprint (published version

    Active antenna

    Get PDF
    An antenna, which may be a search coil, is connected to an operational amplifier circuit which provides negative impedances, each of which is in the order of magnitude of the positive impedances which characterize the antenna. The antenna is connected to the inverting input of the operational amplifier; a resistor is connected between the inverting input and the output of the operational amplifier; a capacitor-resistor network, in parallel, is connected between the output and the noninverting input of the operational amplifier; and a resistor is connected from the noninverting input and the circuit common. While this circuit provides a negative resistance and a negative inductance, in series, which appear, looking into the noninverting input of the operational amplifier, in parallel with the antenna, these negative impedances appear in a series loop with the antenna positive impedances, so as to algebraically add. This circuit is tuned by varying the various circuit components so that the negative impedances are very close, but somewhat less, in magnitude, to the antenna impedances. The result is to increase the sensitivity of the antenna by lowering its effective impedance. This, in turn, increases the effective area of the antenna, which may be broadband
    corecore