141 research outputs found

    Skeleton Focused Human Activity Recognition in RGB Video

    Full text link
    The data-driven approach that learns an optimal representation of vision features like skeleton frames or RGB videos is currently a dominant paradigm for activity recognition. While great improvements have been achieved from existing single modal approaches with increasingly larger datasets, the fusion of various data modalities at the feature level has seldom been attempted. In this paper, we propose a multimodal feature fusion model that utilizes both skeleton and RGB modalities to infer human activity. The objective is to improve the activity recognition accuracy by effectively utilizing the mutual complemental information among different data modalities. For the skeleton modality, we propose to use a graph convolutional subnetwork to learn the skeleton representation. Whereas for the RGB modality, we will use the spatial-temporal region of interest from RGB videos and take the attention features from the skeleton modality to guide the learning process. The model could be either individually or uniformly trained by the back-propagation algorithm in an end-to-end manner. The experimental results for the NTU-RGB+D and Northwestern-UCLA Multiview datasets achieved state-of-the-art performance, which indicates that the proposed skeleton-driven attention mechanism for the RGB modality increases the mutual communication between different data modalities and brings more discriminative features for inferring human activities.Comment: 8 page

    Focusing and Diffusion: Bidirectional Attentive Graph Convolutional Networks for Skeleton-based Action Recognition

    Full text link
    A collection of approaches based on graph convolutional networks have proven success in skeleton-based action recognition by exploring neighborhood information and dense dependencies between intra-frame joints. However, these approaches usually ignore the spatial-temporal global context as well as the local relation between inter-frame and intra-frame. In this paper, we propose a focusing and diffusion mechanism to enhance graph convolutional networks by paying attention to the kinematic dependence of articulated human pose in a frame and their implicit dependencies over frames. In the focusing process, we introduce an attention module to learn a latent node over the intra-frame joints to convey spatial contextual information. In this way, the sparse connections between joints in a frame can be well captured, while the global context over the entire sequence is further captured by these hidden nodes with a bidirectional LSTM. In the diffusing process, the learned spatial-temporal contextual information is passed back to the spatial joints, leading to a bidirectional attentive graph convolutional network (BAGCN) that can facilitate skeleton-based action recognition. Extensive experiments on the challenging NTU RGB+D and Skeleton-Kinetics benchmarks demonstrate the efficacy of our approach

    Effective Human Activity Recognition Based on Small Datasets

    Full text link
    Most recent work on vision-based human activity recognition (HAR) focuses on designing complex deep learning models for the task. In so doing, there is a requirement for large datasets to be collected. As acquiring and processing large training datasets are usually very expensive, the problem of how dataset size can be reduced without affecting recognition accuracy has to be tackled. To do so, we propose a HAR method that consists of three steps: (i) data transformation involving the generation of new features based on transforming of raw data, (ii) feature extraction involving the learning of a classifier based on the AdaBoost algorithm and the use of training data consisting of the transformed features, and (iii) parameter determination and pattern recognition involving the determination of parameters based on the features generated in (ii) and the use of the parameters as training data for deep learning algorithms to be used to recognize human activities. Compared to existing approaches, this proposed approach has the advantageous characteristics that it is simple and robust. The proposed approach has been tested with a number of experiments performed on a relatively small real dataset. The experimental results indicate that using the proposed method, human activities can be more accurately recognized even with smaller training data size.Comment: 7 page

    Feedback Graph Convolutional Network for Skeleton-based Action Recognition

    Full text link
    Skeleton-based action recognition has attracted considerable attention in computer vision since skeleton data is more robust to the dynamic circumstance and complicated background than other modalities. Recently, many researchers have used the Graph Convolutional Network (GCN) to model spatial-temporal features of skeleton sequences by an end-to-end optimization. However, conventional GCNs are feedforward networks which are impossible for low-level layers to access semantic information in the high-level layers. In this paper, we propose a novel network, named Feedback Graph Convolutional Network (FGCN). This is the first work that introduces the feedback mechanism into GCNs and action recognition. Compared with conventional GCNs, FGCN has the following advantages: (1) a multi-stage temporal sampling strategy is designed to extract spatial-temporal features for action recognition in a coarse-to-fine progressive process; (2) A dense connections based Feedback Graph Convolutional Block (FGCB) is proposed to introduce feedback connections into the GCNs. It transmits the high-level semantic features to the low-level layers and flows temporal information stage by stage to progressively model global spatial-temporal features for action recognition; (3) The FGCN model provides early predictions. In the early stages, the model receives partial information about actions. Naturally, its predictions are relatively coarse. The coarse predictions are treated as the prior to guide the feature learning of later stages for a accurate prediction. Extensive experiments on the datasets, NTU-RGB+D, NTU-RGB+D120 and Northwestern-UCLA, demonstrate that the proposed FGCN is effective for action recognition. It achieves the state-of-the-art performance on the three datasets.Comment: 18 pages, 5 figure

    On the spatial attention in Spatio-Temporal Graph Convolutional Networks for skeleton-based human action recognition

    Full text link
    Graph convolutional networks (GCNs) achieved promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a spatio-temporal graph. Most of the recently proposed GCN-based methods improve the performance by learning the graph structure at each layer of the network using a spatial attention applied on a predefined graph Adjacency matrix that is optimized jointly with model's parameters in an end-to-end manner. In this paper, we analyze the spatial attention used in spatio-temporal GCN layers and propose a symmetric spatial attention for better reflecting the symmetric property of the relative positions of the human body joints when executing actions. We also highlight the connection of spatio-temporal GCN layers employing additive spatial attention to bilinear layers, and we propose the spatio-temporal bilinear network (ST-BLN) which does not require the use of predefined Adjacency matrices and allows for more flexible design of the model. Experimental results show that the three models lead to effectively the same performance. Moreover, by exploiting the flexibility provided by the proposed ST-BLN, one can increase the efficiency of the model.Comment: 7 pages, 5 figure

    Semantics-Guided Neural Networks for Efficient Skeleton-Based Human Action Recognition

    Full text link
    Skeleton-based human action recognition has attracted great interest thanks to the easy accessibility of the human skeleton data. Recently, there is a trend of using very deep feedforward neural networks to model the 3D coordinates of joints without considering the computational efficiency. In this paper, we propose a simple yet effective semantics-guided neural network (SGN) for skeleton-based action recognition. We explicitly introduce the high level semantics of joints (joint type and frame index) into the network to enhance the feature representation capability. In addition, we exploit the relationship of joints hierarchically through two modules, i.e., a joint-level module for modeling the correlations of joints in the same frame and a framelevel module for modeling the dependencies of frames by taking the joints in the same frame as a whole. A strong baseline is proposed to facilitate the study of this field. With an order of magnitude smaller model size than most previous works, SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets. The source code is available at https://github.com/microsoft/SGN.Comment: Accepted by CVPR2020. The source code is available at https://github.com/microsoft/SG

    Symbiotic Graph Neural Networks for 3D Skeleton-based Human Action Recognition and Motion Prediction

    Full text link
    3D skeleton-based action recognition and motion prediction are two essential problems of human activity understanding. In many previous works: 1) they studied two tasks separately, neglecting internal correlations; 2) they did not capture sufficient relations inside the body. To address these issues, we propose a symbiotic model to handle two tasks jointly; and we propose two scales of graphs to explicitly capture relations among body-joints and body-parts. Together, we propose symbiotic graph neural networks, which contain a backbone, an action-recognition head, and a motion-prediction head. Two heads are trained jointly and enhance each other. For the backbone, we propose multi-branch multi-scale graph convolution networks to extract spatial and temporal features. The multi-scale graph convolution networks are based on joint-scale and part-scale graphs. The joint-scale graphs contain actional graphs, capturing action-based relations, and structural graphs, capturing physical constraints. The part-scale graphs integrate body-joints to form specific parts, representing high-level relations. Moreover, dual bone-based graphs and networks are proposed to learn complementary features. We conduct extensive experiments for skeleton-based action recognition and motion prediction with four datasets, NTU-RGB+D, Kinetics, Human3.6M, and CMU Mocap. Experiments show that our symbiotic graph neural networks achieve better performances on both tasks compared to the state-of-the-art methods.Comment: submitted to IEEE-TPAM

    Temporal Attention-Augmented Graph Convolutional Network for Efficient Skeleton-Based Human Action Recognition

    Full text link
    Graph convolutional networks (GCNs) have been very successful in modeling non-Euclidean data structures, like sequences of body skeletons forming actions modeled as spatio-temporal graphs. Most GCN-based action recognition methods use deep feed-forward networks with high computational complexity to process all skeletons in an action. This leads to a high number of floating point operations (ranging from 16G to 100G FLOPs) to process a single sample, making their adoption in restricted computation application scenarios infeasible. In this paper, we propose a temporal attention module (TAM) for increasing the efficiency in skeleton-based action recognition by selecting the most informative skeletons of an action at the early layers of the network. We incorporate the TAM in a light-weight GCN topology to further reduce the overall number of computations. Experimental results on two benchmark datasets show that the proposed method outperforms with a large margin the baseline GCN-based method while having 2.9 times less number of computations. Moreover, it performs on par with the state-of-the-art with up to 9.6 times less number of computations.Comment: 8 pages, 4 figures, International Conference on Pattern Recognitio

    Infrared and 3D skeleton feature fusion for RGB-D action recognition

    Full text link
    A challenge of skeleton-based action recognition is the difficulty to classify actions with similar motions and object-related actions. Visual clues from other streams help in that regard. RGB data are sensible to illumination conditions, thus unusable in the dark. To alleviate this issue and still benefit from a visual stream, we propose a modular network (FUSION) combining skeleton and infrared data. A 2D convolutional neural network (CNN) is used as a pose module to extract features from skeleton data. A 3D CNN is used as an infrared module to extract visual cues from videos. Both feature vectors are then concatenated and exploited conjointly using a multilayer perceptron (MLP). Skeleton data also condition the infrared videos, providing a crop around the performing subjects and thus virtually focusing the attention of the infrared module. Ablation studies show that using pre-trained networks on other large scale datasets as our modules and data augmentation yield considerable improvements on the action classification accuracy. The strong contribution of our cropping strategy is also demonstrated. We evaluate our method on the NTU RGB+D dataset, the largest dataset for human action recognition from depth cameras, and report state-of-the-art performances.Comment: 11 pages, 5 figures, submitted to IEEE Acces

    SpatioTemporal Focus for Skeleton-based Action Recognition

    Full text link
    Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition due to their powerful ability to model data topology. We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors. First, the predefined graph structures are shared throughout the network, lacking the flexibility and capacity to model the multi-grain semantic information. Second, the relations among the global joints are not fully exploited by the graph local convolution, which may lose the implicit joint relevance. For instance, actions such as running and waving are performed by the co-movement of body parts and joints, e.g., legs and arms, however, they are located far away in physical connection. Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information from the body joints and parts. As a result, more explainable representations for different skeleton action sequences can be obtained by MCF. In this study, we follow the common practice that the dense sample strategy of the input skeleton sequences is adopted and this brings much redundancy since number of instances has nothing to do with actions. To reduce the redundancy, a temporal discrimination focus module, termed TDF, is developed to capture the local sensitive points of the temporal dynamics. MCF and TDF are integrated into the standard GCN network to form a unified architecture, named STF-Net. It is noted that STF-Net provides the capability to capture robust movement patterns from these skeleton topology structures, based on multi-grain context aggregation and temporal dependency. Extensive experimental results show that our STF-Net significantly achieves state-of-the-art results on three challenging benchmarks NTU RGB+D 60, NTU RGB+D 120, and Kinetics-skeleton.Comment: Submitted to TCSV
    • …
    corecore