188,916 research outputs found

    HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects

    Get PDF
    Pose estimation is an important and challenging task in computer vision. Hand pose estimation has drawn increasing attention during the past decade and has been utilized in a wide range of applications including augmented reality, virtual reality, human-computer interaction, and action recognition. Hand pose is more challenging than general human body pose estimation due to the large number of degrees of freedom and the frequent occlusions of joints. To address these challenges, we propose HandyPose, a single-pass, end-to-end trainable architecture for hand pose estimation. Adopting an encoder-decoder framework with multi-level features, our method achieves high accuracy in hand pose while maintaining manageable size complexity and modularity of the network. HandyPose takes a multi-scale approach to representing context by incorporating spatial information at various levels of the network to mitigate the loss of resolution due to pooling. Our advanced multi-level waterfall architecture leverages the efficiency of progressive cascade filtering while maintaining larger fields-of-view through the concatenation of multi-level features from different levels of the network in the waterfall module. The decoder incorporates both the waterfall and multi-scale features for the generation of accurate joint heatmaps in a single stage. Recent developments in computer vision and deep learning have achieved significant progress in human pose estimation, but little of this work has been applied to vehicle pose. We also propose VehiPose, an efficient architecture for vehicle pose estimation, based on a multi-scale deep learning approach that achieves high accuracy vehicle pose estimation while maintaining manageable network complexity and modularity. The VehiPose architecture combines an encoder-decoder architecture with a waterfall atrous convolution module for multi-scale feature representation. It incorporates contextual information across scales and performs the localization of vehicle keypoints in an end-to-end trainable network. Our HandyPose architecture has a baseline of vehipose with an improvement in performance by incorporating multi-level features from different levels of the backbone and introducing novel multi-level modules. HandyPose and VehiPose more thoroughly leverage the image contextual information and deal with the issue of spatial loss of resolution due to successive pooling while maintaining the size complexity, modularity of the network, and preserve the spatial information at various levels of the network. Our results demonstrate state-of-the-art performance on popular datasets and show that HandyPose and VehiPose are robust and efficient architectures for hand and vehicle pose estimation

    Deep Adaptive Attention for Joint Facial Action Unit Detection and Face Alignment

    Full text link
    Facial action unit (AU) detection and face alignment are two highly correlated tasks since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. Most existing AU detection works often treat face alignment as a preprocessing and handle the two tasks independently. In this paper, we propose a novel end-to-end deep learning framework for joint AU detection and face alignment, which has not been explored before. In particular, multi-scale shared features are learned firstly, and high-level features of face alignment are fed into AU detection. Moreover, to extract precise local features, we propose an adaptive attention learning module to refine the attention map of each AU adaptively. Finally, the assembled local features are integrated with face alignment features and global features for AU detection. Experiments on BP4D and DISFA benchmarks demonstrate that our framework significantly outperforms the state-of-the-art methods for AU detection.Comment: This paper has been accepted by ECCV 201

    Facial Action Unit Detection Using Attention and Relation Learning

    Full text link
    Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the existing attention based AU detection works use prior knowledge to predefine fixed attentions or refine the predefined attentions within a small range, which limits their capacity to model various AUs. In this paper, we propose an end-to-end deep learning based attention and relation learning framework for AU detection with only AU labels, which has not been explored before. In particular, multi-scale features shared by each AU are learned firstly, and then both channel-wise and spatial attentions are adaptively learned to select and extract AU-related local features. Moreover, pixel-level relations for AUs are further captured to refine spatial attentions so as to extract more relevant local features. Without changing the network architecture, our framework can be easily extended for AU intensity estimation. Extensive experiments show that our framework (i) soundly outperforms the state-of-the-art methods for both AU detection and AU intensity estimation on the challenging BP4D, DISFA, FERA 2015 and BP4D+ benchmarks, (ii) can adaptively capture the correlated regions of each AU, and (iii) also works well under severe occlusions and large poses.Comment: This paper is accepted by IEEE Transactions on Affective Computin

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes
    • …
    corecore