48 research outputs found

    Temporal Action Segmentation: An Analysis of Modern Techniques

    Full text link
    Temporal action segmentation (TAS) in videos aims at densely identifying video frames in minutes-long videos with multiple action classes. As a long-range video understanding task, researchers have developed an extended collection of methods and examined their performance using various benchmarks. Despite the rapid growth of TAS techniques in recent years, no systematic survey has been conducted in these sectors. This survey analyzes and summarizes the most significant contributions and trends. In particular, we first examine the task definition, common benchmarks, types of supervision, and prevalent evaluation measures. In addition, we systematically investigate two essential techniques of this topic, i.e., frame representation and temporal modeling, which have been studied extensively in the literature. We then conduct a thorough review of existing TAS works categorized by their levels of supervision and conclude our survey by identifying and emphasizing several research gaps. In addition, we have curated a list of TAS resources, which is available at https://github.com/nus-cvml/awesome-temporal-action-segmentation.Comment: 19 pages, 9 figures, 8 table

    Rescaling Egocentric Vision:Collection Pipeline and Challenges for EPIC-KITCHENS-100

    Get PDF
    This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics.Published versionResearch at Bristol is supported by Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Program (DTP), EPSRC Fellowship UMPIRE (EP/T004991/1). Research at Catania is sponsored by Piano della Ricerca 2016-2018 linea di Intervento 2 of DMI, by MISE - PON I&C 2014-2020, ENIGMA project (CUP: B61B19000520008) and by MIUR AIM - Attrazione e Mobilita Internazionale Linea 1 - AIM1893589 - CUP E64118002540007

    Rescaling Egocentric Vision: Collection, Pipeline and Challenges for EPIC-KITCHENS-100

    Get PDF
    This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics.Published versionResearch at Bristol is supported by Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Program (DTP), EPSRC Fellowship UMPIRE (EP/T004991/1). Research at Catania is sponsored by Piano della Ricerca 2016-2018 linea di Intervento 2 of DMI, by MISE - PON I&C 2014-2020, ENIGMA project (CUP: B61B19000520008) and by MIUR AIM - Attrazione e Mobilita Internazionale Linea 1 - AIM1893589 - CUP E64118002540007

    SF-Net: Single-Frame Supervision for Temporal Action Localization

    Full text link
    In this paper, we study an intermediate form of supervision, i.e., single-frame supervision, for temporal action localization (TAL). To obtain the single-frame supervision, the annotators are asked to identify only a single frame within the temporal window of an action. This can significantly reduce the labor cost of obtaining full supervision which requires annotating the action boundary. Compared to the weak supervision that only annotates the video-level label, the single-frame supervision introduces extra temporal action signals while maintaining low annotation overhead. To make full use of such single-frame supervision, we propose a unified system called SF-Net. First, we propose to predict an actionness score for each video frame. Along with a typical category score, the actionness score can provide comprehensive information about the occurrence of a potential action and aid the temporal boundary refinement during inference. Second, we mine pseudo action and background frames based on the single-frame annotations. We identify pseudo action frames by adaptively expanding each annotated single frame to its nearby, contextual frames and we mine pseudo background frames from all the unannotated frames across multiple videos. Together with the ground-truth labeled frames, these pseudo-labeled frames are further used for training the classifier. In extensive experiments on THUMOS14, GTEA, and BEOID, SF-Net significantly improves upon state-of-the-art weakly-supervised methods in terms of both segment localization and single-frame localization. Notably, SF-Net achieves comparable results to its fully-supervised counterpart which requires much more resource intensive annotations. The code is available at https://github.com/Flowerfan/SF-Net
    corecore