10 research outputs found

    Learning spatio-temporal co-occurrence correlograms for efficient human action classification

    Get PDF
    Spatio-temporal interest point (STIP) based features show great promises in human action analysis with high efficiency and robustness. However, they typically focus on bag-of-visual words (BoVW), which omits any correlation among words and shows limited discrimination in real-world videos. In this paper, we propose a novel approach to add the spatio-temporal co-occurrence relationships of visual words to BoVW for a richer representation. Rather than assigning a particular scale on videos, we adopt the normalized google-like distance (NGLD) to measure the words' co-occurrence semantics, which grasps the videos' structure information in a statistical way. All pairwise distances in spatial and temporal domain compose the corresponding NGLD correlograms, then their united form is incorporated with BoVW by training a multi-channel kernel SVM classifier. Experiments on real-world datasets (KTH and UCF sports) validate the efficiency of our approach for the classification of human actions.Imaging Science & Photographic TechnologyCPCI-S(ISTP)

    Learning directional co-occurrence for human action classification

    Get PDF
    Spatio-temporal interest point (STIP) based methods have shown promising results for human action classification. However, state-of-art works typically utilize bag-of-visual words (BoVW), which focuses on the statistical distribution of features but ignores their inherent structural relationships. To solve this problem, a descriptor, namely directional pairwise feature (DPF), is proposed to encode the mutual direction information between pairwise words, aiming at adding more spatial discriminant to BoVW. Firstly, STIP features are extracted and classified into a set of labeled words. Then in each frame, the DPF is constructed for every pair of words with different labels, according to their assigned directional vector. Finally, DPFs are quantized to be a probability histogram as a representation of human action. The proposed method is evaluated on two challenging datasets, Rochester and UT-interaction, and the results based on chi-squared kernel SVM classifiers confirm that our method can classify human actions with high accuracies.AcousticsEngineering, Electrical & ElectronicEICPCI-S(ISTP)

    A Methodology for Extracting Human Bodies from Still Images

    Get PDF
    Monitoring and surveillance of humans is one of the most prominent applications of today and it is expected to be part of many future aspects of our life, for safety reasons, assisted living and many others. Many efforts have been made towards automatic and robust solutions, but the general problem is very challenging and remains still open. In this PhD dissertation we examine the problem from many perspectives. First, we study the performance of a hardware architecture designed for large-scale surveillance systems. Then, we focus on the general problem of human activity recognition, present an extensive survey of methodologies that deal with this subject and propose a maturity metric to evaluate them. One of the numerous and most popular algorithms for image processing found in the field is image segmentation and we propose a blind metric to evaluate their results regarding the activity at local regions. Finally, we propose a fully automatic system for segmenting and extracting human bodies from challenging single images, which is the main contribution of the dissertation. Our methodology is a novel bottom-up approach relying mostly on anthropometric constraints and is facilitated by our research in the fields of face, skin and hands detection. Experimental results and comparison with state-of-the-art methodologies demonstrate the success of our approach

    Acoustic Source Localisation in constrained environments

    Get PDF
    Acoustic Source Localisation (ASL) is a problem with real-world applications across multiple domains, from smart assistants to acoustic detection and tracking. And yet, despite the level of attention in recent years, a technique for rapid and robust ASL remains elusive – not least in the constrained environments in which such techniques are most likely to be deployed. In this work, we seek to address some of these current limitations by presenting improvements to the ASL method for three commonly encountered constraints: the number and configuration of sensors; the limited signal sampling potentially available; and the nature and volume of training data required to accurately estimate Direction of Arrival (DOA) when deploying a particular supervised machine learning technique. In regard to the number and configuration of sensors, we find that accuracy can be maintained at state-of-the-art levels, Steered Response Power (SRP), while reducing computation sixfold, based on direct optimisation of well known ASL formulations. Moreover, we find that the circular microphone configuration is the least desirable as it yields the highest localisation error. In regard to signal sampling, we demonstrate that the computer vision inspired algorithm presented in this work, which extracts selected keypoints from the signal spectrogram, and uses them to select signal samples, outperforms an audio fingerprinting baseline while maintaining a compression ratio of 40:1. In regard to the training data employed in machine learning ASL techniques, we show that the use of music training data yields an improvement of 19% against a noise data baseline while maintaining accuracy using only 25% of the training data, while training with speech as opposed to noise improves DOA estimation by an average of 17%, outperforming the Generalised Cross-Correlation technique by 125% in scenarios in which the test and training acoustic environments are matched.Heriot-Watt University James Watt Scholarship (JSW) in the School of Engineering & Physical Sciences
    corecore