20 research outputs found

    Spatial prediction based on self-similarity compensation for 3D holoscopic image and video coding

    Get PDF
    WOS:000298962501022 (Nº de Acesso Web of Science)Holoscopic imaging, also known as integral imaging, provides a solution for glassless 3D, and is promising to change the market for 3D television. To start, this paper briefly describes the general concepts of holoscopic imaging, focusing mainly on the spatial correlations inherent to this new type of content, which appear due to the micro-lens array that is used for both acquisition and display. The micro-images that are formed behind each micro-lens, from which only one pixel is viewed from a given observation point, have a high cross-correlation between them, which can be exploited for coding. A novel scheme for spatial prediction, exploring the particular arrangement of holoscopic images, is proposed. The proposed scheme can be used for both still image coding and intra-coding of video. Experimental results based on an H.264/AVC video codec modified to handle 3D holoscopic images and video are presented, showing the superior performance of this approach

    Improved inter-layer prediction for Light field content coding with display scalability

    Get PDF
    Light field imaging based on microlens arrays - also known as plenoptic, holoscopic and integral imaging - has recently risen up as feasible and prospective technology due to its ability to support functionalities not straightforwardly available in conventional imaging systems, such as: post-production refocusing and depth of field changing. However, to gradually reach the consumer market and to provide interoperability with current 2D and 3D representations, a display scalable coding solution is essential. In this context, this paper proposes an improved display scalable light field codec comprising a three-layer hierarchical coding architecture (previously proposed by the authors) that provides interoperability with 2D (Base Layer) and 3D stereo and multiview (First Layer) representations, while the Second Layer supports the complete light field content. For further improving the compression performance, novel exemplar-based inter-layer coding tools are proposed here for the Second Layer, namely: (i) an inter-layer reference picture construction relying on an exemplar-based optimization algorithm for texture synthesis, and (ii) a direct prediction mode based on exemplar texture samples from lower layers. Experimental results show that the proposed solution performs better than the tested benchmark solutions, including the authors' previous scalable codec.info:eu-repo/semantics/acceptedVersio

    HEVC-based light field image coding with bi-predicted self-similarity compensation

    Get PDF
    This paper proposes an efficient light field image coding (LFC) solution based on High Efficiency Video Coding (HEVC). The proposed light field codec makes use of the self-similarity (SS) compensated prediction concept to efficiently explore the inherent correlation of this type of content. To further improve the coding performance, a bi-predicted SS estimation and SS compensation is proposed, where the candidate predictor can be also devised as a linear combination of two blocks within the same search window. In addition, an improved vector prediction scheme is also used to take advantage of the particular characteristics of the SS prediction vectors. Experimental results show that the proposed LFC scheme is able to outperform the benchmark solutions with significant gains.info:eu-repo/semantics/acceptedVersio
    corecore