687 research outputs found

    Android Malware Family Classification Based on Resource Consumption over Time

    Full text link
    The vast majority of today's mobile malware targets Android devices. This has pushed the research effort in Android malware analysis in the last years. An important task of malware analysis is the classification of malware samples into known families. Static malware analysis is known to fall short against techniques that change static characteristics of the malware (e.g. code obfuscation), while dynamic analysis has proven effective against such techniques. To the best of our knowledge, the most notable work on Android malware family classification purely based on dynamic analysis is DroidScribe. With respect to DroidScribe, our approach is easier to reproduce. Our methodology only employs publicly available tools, does not require any modification to the emulated environment or Android OS, and can collect data from physical devices. The latter is a key factor, since modern mobile malware can detect the emulated environment and hide their malicious behavior. Our approach relies on resource consumption metrics available from the proc file system. Features are extracted through detrended fluctuation analysis and correlation. Finally, a SVM is employed to classify malware into families. We provide an experimental evaluation on malware samples from the Drebin dataset, where we obtain a classification accuracy of 82%, proving that our methodology achieves an accuracy comparable to that of DroidScribe. Furthermore, we make the software we developed publicly available, to ease the reproducibility of our results.Comment: Extended Versio

    Analysis and evaluation of SafeDroid v2.0, a framework for detecting malicious Android applications

    Get PDF
    Android smartphones have become a vital component of the daily routine of millions of people, running a plethora of applications available in the official and alternative marketplaces. Although there are many security mechanisms to scan and filter malicious applications, malware is still able to reach the devices of many end-users. In this paper, we introduce the SafeDroid v2.0 framework, that is a flexible, robust, and versatile open-source solution for statically analysing Android applications, based on machine learning techniques. The main goal of our work, besides the automated production of fully sufficient prediction and classification models in terms of maximum accuracy scores and minimum negative errors, is to offer an out-of-the-box framework that can be employed by the Android security researchers to efficiently experiment to find effective solutions: the SafeDroid v2.0 framework makes it possible to test many different combinations of machine learning classifiers, with a high degree of freedom and flexibility in the choice of features to consider, such as dataset balance and dataset selection. The framework also provides a server, for generating experiment reports, and an Android application, for the verification of the produced models in real-life scenarios. An extensive campaign of experiments is also presented to show how it is possible to efficiently find competitive solutions: the results of our experiments confirm that SafeDroid v2.0 can reach very good performances, even with highly unbalanced dataset inputs and always with a very limited overhead

    Isolated Mobile Malware Observation

    Get PDF
    The idea behind Bring Your Own Device (BYOD) it that personal mobile devices can be used in the workplace to enhance convenience and flexibility. This development encourages organizations to allow access of personal mobile devices to business information and systems for businesses operation. However, BYOD opens a firm to various security risks such as data contamination and the exposure of user interest to criminal activities. Mobile devices were not designed to handle intense data security and advanced security features are frequently turned off. Using personal mobile devices can also expose a system to various forms of security threats like malware. This research aims to analyze mobile network traffic from suspicious mobile applications and investigate data accessible to malicious applications on mobile devices. The research is further intended to observe the behavior of malware on mobile devices. A network with a wireless communication over a centralized access control point was built. The control access point serves as the centralized location for data monitoring, capturing and analyzing of transmitted data from all the devices connected to it. The research demonstrates a procedure for data capturing for analysis from a data collection point which does not require access to each application and allows for the study of potential infections from the outside of the mobile device

    Exploring the Usage of Topic Modeling for Android Malware Static Analysis

    Get PDF
    The rapid growth in smartphone and tablet usage over the last years has led to the inevitable rise in targeting of these devices by cyber-criminals. The exponential growth of Android devices, and the buoyant and largely unregulated Android app market, produced a sharp rise in malware targeting that platform. Furthermore, malware writers have been developing detection-evasion techniques which rapidly make anti-malware technologies ineffective. It is hence advisable that security expert are provided with tools which can aid them in the analysis of existing and new Android malware. In this paper, we explore the use of topic modeling as a technique which can assist experts to analyse malware applications in order to discover their characteristic. We apply Latend Dirichlet Allocation (LDA) to mobile applications represented as opcode sequences, hence considering a topic as a discrete distribution of opcode. Our experiments on a dataset of 900 malware applications of different families show that the information provided by topic modeling may help in better understanding malware characteristics and similarities
    • …
    corecore