241 research outputs found

    Outage Probability for Multi-Cell Processing under Rayleigh Fading

    Get PDF
    Multi-cell processing, also called Coordinated Multiple Point (CoMP), is a very promising distributed multi-antennas technique that uses neighbour cell's antennas. This is expected to be part of next generation cellular networks standards such as LTE-A. Small cell networks in dense urban environment are mainly limited by interferences and CoMP can strongly take advantage of this fact to improve cell-edge users' throughput. This paper provides an analytical derivation of the capacity outage probability for CoMP experiencing fast Rayleigh fading. Only the average received power (slow varying fading) has to be known, and perfect Channel State Information (CSI) is not required. An optimisation of the successfully received data-rate is then derived with respect to the number of cooperating stations and the outage probability, illustrated by numerical examples

    Linear Beamforming for the Spatially Correlated MISO broadcast channel

    Full text link
    A spatially correlated broadcast setting with M antennas at the base station and M users (each with a single antenna) is considered. We assume that the users have perfect channel information about their links and the base station has only statistical information about each user's link. The base station employs a linear beamforming strategy with one spatial eigen-mode allocated to each user. The goal of this work is to understand the structure of the beamforming vectors that maximize the ergodic sum-rate achieved by treating interference as noise. In the M = 2 case, we first fix the beamforming vectors and compute the ergodic sum-rate in closed-form as a function of the channel statistics. We then show that the optimal beamforming vectors are the dominant generalized eigenvectors of the covariance matrices of the two links. It is difficult to obtain intuition on the structure of the optimal beamforming vectors for M > 2 due to the complicated nature of the sum-rate expression. Nevertheless, in the case of asymptotic M, we show that the optimal beamforming vectors have to satisfy a set of fixed-point equations.Comment: Published in IEEE ISIT 2010, 5 page

    Multi-User Diversity vs. Accurate Channel State Information in MIMO Downlink Channels

    Full text link
    In a multiple transmit antenna, single antenna per receiver downlink channel with limited channel state feedback, we consider the following question: given a constraint on the total system-wide feedback load, is it preferable to get low-rate/coarse channel feedback from a large number of receivers or high-rate/high-quality feedback from a smaller number of receivers? Acquiring feedback from many receivers allows multi-user diversity to be exploited, while high-rate feedback allows for very precise selection of beamforming directions. We show that there is a strong preference for obtaining high-quality feedback, and that obtaining near-perfect channel information from as many receivers as possible provides a significantly larger sum rate than collecting a few feedback bits from a large number of users.Comment: Submitted to IEEE Transactions on Communications, July 200

    Receive Combining vs. Multi-Stream Multiplexing in Downlink Systems with Multi-Antenna Users

    Full text link
    In downlink multi-antenna systems with many users, the multiplexing gain is strictly limited by the number of transmit antennas NN and the use of these antennas. Assuming that the total number of receive antennas at the multi-antenna users is much larger than NN, the maximal multiplexing gain can be achieved with many different transmission/reception strategies. For example, the excess number of receive antennas can be utilized to schedule users with effective channels that are near-orthogonal, for multi-stream multiplexing to users with well-conditioned channels, and/or to enable interference-aware receive combining. In this paper, we try to answer the question if the NN data streams should be divided among few users (many streams per user) or many users (few streams per user, enabling receive combining). Analytic results are derived to show how user selection, spatial correlation, heterogeneous user conditions, and imperfect channel acquisition (quantization or estimation errors) affect the performance when sending the maximal number of streams or one stream per scheduled user---the two extremes in data stream allocation. While contradicting observations on this topic have been reported in prior works, we show that selecting many users and allocating one stream per user (i.e., exploiting receive combining) is the best candidate under realistic conditions. This is explained by the provably stronger resilience towards spatial correlation and the larger benefit from multi-user diversity. This fundamental result has positive implications for the design of downlink systems as it reduces the hardware requirements at the user devices and simplifies the throughput optimization.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 11 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/one-or-multiple-stream

    How Much Multiuser Diversity is Required for Energy Limited Multiuser Systems?

    Full text link
    Multiuser diversity (MUDiv) is one of the central concepts in multiuser (MU) systems. In particular, MUDiv allows for scheduling among users in order to eliminate the negative effects of unfavorable channel fading conditions of some users on the system performance. Scheduling, however, consumes energy (e.g., for making users' channel state information available to the scheduler). This extra usage of energy, which could potentially be used for data transmission, can be very wasteful, especially if the number of users is large. In this paper, we answer the question of how much MUDiv is required for energy limited MU systems. Focusing on uplink MU wireless systems, we develop MU scheduling algorithms which aim at maximizing the MUDiv gain. Toward this end, we introduce a new realistic energy model which accounts for scheduling energy and describes the distribution of the total energy between scheduling and data transmission stages. Using the fact that such energy distribution can be controlled by varying the number of active users, we optimize this number by either (i) minimizing the overall system bit error rate (BER) for a fixed total energy of all users in the system or (ii) minimizing the total energy of all users for fixed BER requirements. We find that for a fixed number of available users, the achievable MUDiv gain can be improved by activating only a subset of users. Using asymptotic analysis and numerical simulations, we show that our approach benefits from MUDiv gains higher than that achievable by generic greedy access algorithm, which is the optimal scheduling method for energy unlimited systems.Comment: 28 pages, 9 figures, submitted to IEEE Trans. Signal Processing in Oct. 200

    Outage Constrained Robust Secure Transmission for MISO Wiretap Channels

    Full text link
    In this paper we consider the robust secure beamformer design for MISO wiretap channels. Assume that the eavesdroppers' channels are only partially available at the transmitter, we seek to maximize the secrecy rate under the transmit power and secrecy rate outage probability constraint. The outage probability constraint requires that the secrecy rate exceeds certain threshold with high probability. Therefore including such constraint in the design naturally ensures the desired robustness. Unfortunately, the presence of the probabilistic constraints makes the problem non-convex and hence difficult to solve. In this paper, we investigate the outage probability constrained secrecy rate maximization problem using a novel two-step approach. Under a wide range of uncertainty models, our developed algorithms can obtain high-quality solutions, sometimes even exact global solutions, for the robust secure beamformer design problem. Simulation results are presented to verify the effectiveness and robustness of the proposed algorithms
    corecore