155 research outputs found

    Formant characteristics of Malay vowels

    Get PDF
    The purpose of this study was to investigate and examined the eight vowels formant characteristic of Malay language. Previous research of Malay language only investigated six basic vowels /a/, /e/, /i/, /o/, /u/, /ə/. The vowels /ɔ/, /ε/ that usually exist in a dialect were not included in the previous investigations. In this study, the vowels sound were collected from five men and four women producing the vowels /a/, /e/, /i/, /o/, /u/, /ə/, /ɔ/, /ε/ from different regions and dialects in Malaysia. Formant contours, F1 until F4 of the vowels were measured using interactive editing tool called Praat. Analysis of the formant data showed numerous differences between vowels in terms of average frequencies of F1 and F2, and the degree of overlap among adjacent vowels. When compared with the International Phonetic Alphabet (IPA), most pronunciation of the Malay vowels were at the same position but the vowel /ε/ seen more likely to become a front vowel instead of a central vowel. Consequently, vowel features of the two Malay allophones /ɔ/ and /ε/ were documented and added to the IPA vowel chart. The findings form the fundamental basis for further research of speech synthesis, speech rehabilitation and speech reproduction of the Malay language

    The doctoral research abstracts. Vol:10 2016 / Institute of Graduate Studies, UiTM

    Get PDF
    Foreword: Congratulations to Institute of Graduate Studies on the continuous efforts to publish the 10th issue of the Doctoral Research Abstracts which showcases the research carried out in the various disciplines range from science and technology, business and administration to social science and humanities. This issue captures the novelty of research contributed by seventy (70) PhD graduands receiving their scrolls in the UiTM’s 85th Convocation. As of October 2016, this year UiTM has produced 138 PhD graduates soaring from125 in the previous year (2015). It shows that UiTM is in the positive direction to achive the total of 1200 PhD graduates in 2020. To the 70 doctorates, I would like it to be known that you have most certainly done UiTM proud by journeying through the scholarly world with its endless challenges and obstacles, and by persevering right till the very end. This convocation should not be regarded as the end of your highest scholarly achievement and contribution to the body of knowledge but rather as the beginning of embarking into more innovative research from knowledge gained during this academic journey, for the community and country. This year marks UiTM’s 60th Anniversary and we have been producing many good quality graduates that have a major impact on the socio-economic development of the country and the bumiputeras. As alumni of UiTM, we hold you dear to our hearts. We sincerely wish you all the best and may the Almighty guide you to a path of excellence and success. As you leave the university as alumni we hope a new relationship will be fostered between you and the faculty in soaring UiTM to greater heights. “UiTM Sentiasa di Hati Ku” / Prof Emeritus Dato’ Dr Hassan Said Vice Chancellor Universiti Teknologi MAR

    Speech recognition systems and russian pronunciation variation in the context of VoiceInteraction

    Get PDF
    The present thesis aims to describe the work performed during the internship for the master’s degree in Linguistics at VoiceInteraction, an international Artificial Intelligence (AI) company, specializing in developing speech processing technologies. The goal of the internship was to study phonetic characteristics of the Russian language, attending to four main tasks: description of the phonetic-phonological inventory; validation of transcriptions of broadcast news; validation of a previously created lexicon composed by ten thousand (10 000) most frequently observed words in a text corpus crawled from Russian reference newspapers websites; and integration of filled pauses into the Automatic Speech Recognizer (ASR). Initially, a collection of audio and text broadcast news media from Russian-speaking regions, European Russian, Belarus, and the Caucasus Region, featuring different varieties of Russian was conducted. The extracted data and the company's existing data were used to train the acoustic, pronunciation, and language models. The audio data was automatically processed in a proprietary platform and then revised by human annotators. Transcriptions produced automatically and reviewed by annotators were analyzed, and the most common errors were extracted to provide feedback to the community of annotators. The validation of transcriptions, along with the annotation of all of the disfluencies (that previously were left out), resulted in the decrease of Word Error Rate (WER) in most cases. In some cases (in European Russian transcriptions), WER increased, the models were not sufficiently effective to identify the correct words, potentially problematic. Also, audio with overlapped speech, disfluencies, and acoustic events can impact the WER. Since we used the model that was only trained with European Russian to recognize other varieties of Russian language, it resulted in high WER for Belarus and the Caucasus region. The characterization of the Russian phonetic-phonological inventory and the construction of pronunciation rules for internal and external sandhi phenomena were performed for the validation of the lexicon – ten thousand of the most frequently observed words in a text corpus crawled from Russian reference newspapers websites, were revised and modified for the extraction of linguistic patterns to be used in a statistical Grapheme-to-phone (G2P) model. Two evaluations were conducted: before the modifications to the lexicon and after. Preliminary results without training the model show no significant results - 19.85% WER before the modifications, and 19.97% WER after, with a difference of 0.12%. However, we observed a slight improvement of the most frequent words. In the future, we aim to extend the analysis of the lexicon to the 400 000 entries (total lexicon size), analyze the type of errors that are produced, decrease the word error rate (WER), and analyze acoustic models, as well. In this work, we also studied filled pauses, since we believe that research on filled pauses for the Russian language can improve the recognition system of VoiceInteraction, by reducing the processing time and increasing the quality. These are marked in the transcriptions with “%”. In Russian, according to the literature (Ten, 2015; Harlamova, 2008; Bogradonova-Belgarian & Baeva, 2018), these are %a [a], %am [am], %@ [ə], %@m [əm], %e [e], %ɨ [ɨ], %m [m], and %n [n]. In the speech data, two more filled pauses were found, namely, %na [na] and %mna [mna], as far as we know, not yet referenced in the literature. Finally, the work performed during an internship contributed to a European project - Artificial Intelligence and Advanced Data Analysis for Authority Agencies (AIDA). The main goal of the present project is to build a solution capable of automating the processing of large amounts of data that Law Enforcement Agencies (LEAs) have to analyze in the investigations of Terrorism and Cybercrime, using pioneering machine learning and artificial intelligence methods. VoiceInteraction's main contribution to the project was to apply ASR and validate the transcriptions of the Russian (religious-related content). In order to do so, all the tasks performed during the thesis were very relevant and applied in the scope of the AIDA project. Transcription analysis results from the AIDA project showed a high Out-of-Vocabulary (OOV) rate and high substitution (SUBS) rate. Since the language model used in this project was adapted for broadcast content, the religious-related words were left out. Also, function words were incorrectly recognized, in most cases, due to coarticulation with the previous or the following word.A presente tese descreve o trabalho que foi realizado no âmbito de um estágio em linguística computacional na VoiceInteraction, uma empresa de tecnologias de processamento de fala. Desde o início da sua atividade, a empresa tem-se dedicado ao desenvolvimento de tecnologia própria em várias áreas do processamento computacional da fala, entre elas, síntese de fala, processamento de língua natural e reconhecimento automático de fala, representando esta última a principal área de negócio da empresa. A tecnologia de reconhecimento de automático de fala da VoiceInteraction explora a utilização de modelos híbridos em combinação com as redes neuronais (DNN - Deep Neural Networks), que, segundo Lüscher et al. (2019), apresenta um melhor desempenho, quando comparado com modelos de end-to-end apenas. O objetivo principal do estágio focou-se no estudo da fonética da língua russa, atendendo a quatro tarefas: criação do inventário fonético-fonológico; validação das transcrições de noticiários; validação do léxico previamente criado e integração de pausas preenchidas no sistema. Inicialmente, foi realizada uma recolha dos principais meios de comunicação (áudio e texto), apresentando diferentes variedades do russo, nomeadamente, da Rússia Europeia, Bielorrússia e Cáucaso Central. Na Rússia europeia o russo é a língua oficial, na Bielorrússia o russo faz parte das línguas oficiais do país, e na região do Cáucaso Central, o russo é usado como língua franca, visto que este era falado na União Soviética e continua até hoje a ser falado nas regiões pós-Soviéticas. Tratou-se de abranger a maior cobertura possível da língua russa e neste momento apenas foi possível recolher os dados das variedades mencionadas. Os dados extraídos de momento, juntamente com os dados já existentes na empresa, foram utilizados no treino dos modelos acústicos, modelos de pronúncia e modelos de língua. Para o tratamento dos dados de áudio, estes foram inseridos numa plataforma proprietária da empresa, Calligraphus, que, para além de fornecer uma interface de transcrição para os anotadores humanos poderem transcrever os conteúdos, efetua também uma sugestão de transcrição automática desses mesmos conteúdos, a fim de diminuir o esforço despendido pelos anotadores na tarefa. De seguida, as transcrições foram analisadas, de forma a garantir que o sistema de anotação criado pela VoiceInteraction foi seguido, indicando todas as disfluências de fala (fenómenos característicos da edição da fala), tais como prolongamentos, pausas preenchidas, repetições, entre outros e transcrevendo a fala o mais próximo da realidade. Posteriormente, os erros sistemáticos foram analisados e exportados, de forma a fornecer orientações e sugestões de melhoria aos anotadores humanos e, por outro lado, melhorar o desempenho do sistema de reconhecimento. Após a validação das transcrições, juntamente com a anotação de todas as disfluências (que anteriormente eram deixadas de fora), observamos uma diminuição de WER, na maioria dos casos, tal como esperado. Porém, em alguns casos, observamos um aumento do WER. Apesar das correções efetuadas aos ficheiros analisados, os modelos não foram suficientemente eficazes no reconhecimento das palavras corretas, potencialmente problemáticas. A elevada taxa de WER nos áudios com debates políticos, está relacionada com uma maior frequência de fala sobreposta e disfluências (e.g., pausas preenchidas, prolongamentos). O modelo utilizado para reconhecer todas as variedades foi treinado apenas com a variedade de russo europeu e, por isso, o WER alto também foi observado para as variedades da Bielorrússia e para a região do Cáucaso. Numa perspetiva baseada em dados coletados pela empresa, foi realizada, de igual modo, uma caracterização e descrição do inventário fonético-fonológico do russo e a construção de regras de pronúncia, para fenómenos de sandhi interno e externo (Shcherba, 1957; Litnevskaya, 2006; Lekant, 2007; Popov, 2014). A empresa já empregava, através de um G2P estatístico específico para russo, um inventário fonético para o russo, correspondente à literatura referida anteriormente, mas o mesmo ainda não havia sido validado. Foi possível realizar uma verificação e correção, com base na caracterização dos fones do léxico do russo e nos dados ecológicos obtidos de falantes russos em situações comunicativas diversas. A validação do inventário fonético-fonológico permitiu ainda a consequente validação do léxico de russo. O léxico foi construído com base num conjunto de características (e.g., grafema em posição átona tem como pronúncia correspondente o fone [I] e em posição tónica - [i]; o grafema em posição final de palavra é pronunciado como [- vozeado] - [f]; entre outras características) e foi organizado com base no critério da frequência de uso. No total, foram verificadas dez mil (10 000) palavras mais frequentes do russo, tendo por base as estatísticas resultantes da análise dos conteúdos existentes num repositório de artigos de notícias recolhidos previamente de jornais de referência em língua russa. Foi realizada uma avaliação do sistema de reconhecimento antes e depois da modificação das dez mil palavras mais frequentemente ocorridas no léxico - 19,85% WER antes das modificações, e 19,97% WER depois, com uma diferença de 0,12%. Os resultados preliminares, sem o treino do modelo, não demonstram resultados significativos, porém, observamos uma ligeira melhoria no reconhecimento das palavras mais frequentes, tais como palavras funcionais, acrónimos, verbos, nomes, entre outros. Através destes resultados e com base nas regras criadas a partir da correção das dez mil palavras, pretendemos, no futuro, alargar as mesmas a todo o léxico, constituído por quatrocentas mil (400 000) entradas. Após a validação das transcrições e do léxico, com base na literatura, foi também possível realizar uma análise das pausas preenchidas do russo para a integração no sistema de reconhecimento. O interesse de se incluir também as pausas no reconhecedor automático deveu-se sobretudo a estes mecanismos serem difíceis de identificar automaticamente e poderem ser substituídos ou por afetarem as sequências adjacentes. De acordo com o sistema de anotação da empresa, as pausas preenchidas são marcadas na transcrição com o símbolo de percentagem - %. As pausas preenchidas do russo encontradas na literatura foram %a [a], %am [am] (Rose, 1998; Ten, 2015), %@ [ə], %@m [əm] (Bogdanova-Beglarian & Baeva, 2018) %e [e], %ɨ [ɨ], %m [m] e %n [n] (Harlamova, 2008). Nos dados de áudio disponíveis na referida plataforma, para além das pausas preenchidas mencionadas, foram encontradas mais duas, nomeadamente, %na [na] e %mna [mna], até quanto nos é dado saber, ainda não descritas na literatura. De momento, todas as pausas preenchidas referidas já fazem parte dos modelos de reconhecimento automático de fala para a língua russa. O trabalho desenvolvido durante o estágio, ou seja, a validação dos dados existentes na empresa, foi aplicado ao projeto europeu AIDA - The Artificial Intelligence and Advanced Data Analysis for Authority Agencies. O objetivo principal do presente projeto é de criar uma solução capaz de detetar possíveis crimes informáticos e de terrorismo, utilizando métodos de aprendizagem automática. A principal contribuição da VoiceInteraction para o projeto foi a aplicação do ASR e validação das transcrições do russo (conteúdo relacionado com a religião). Para tal, todas as tarefas realizadas durante a tese foram muito relevantes e aplicadas no âmbito do projeto AIDA. Os resultados da validação das transcrições do projeto, mostraram uma elevada taxa de palavras Fora de Vocabulário (OOV) e uma elevada taxa de Substituição (SUBS). Uma vez que o modelo de língua utilizado neste projeto foi adaptado ao conteúdo noticioso, as palavras relacionadas com a religião não se encontravam neste. Além disso, as palavras funcionais foram incorretamente reconhecidas, na maioria dos casos, devido à coarticulação com a palavra anterior ou a seguinte

    A description of the rhythm of Barunga Kriol using rhythm metrics and an analysis of vowel reduction

    Get PDF
    Kriol is an English-lexifier creole language spoken by over 20,000 children and adults in the Northern parts of Australia, yet much about the prosody of this language remains unknown. This thesis provides a preliminary description of the rhythm and patterns of vowel reduction of Barunga Kriol - a variety of Kriol local to Barunga Community, NT – and compares it to a relatively standard variety of Australian English. The thesis is divided into two studies. Study 1, the Rhythm Metric Study, describes the rhythm of Barunga Kriol and Australian English using rhythm metrics. Study 2, the Vowel Reduction Study, compared patterns of vowel reduction in Barunga Kriol and Australian English. This thesis contributes the first in depth studies of vowel reduction patterns and rhythm using rhythm metrics in any variety of Kriol or Australian English. The research also sets an adult baseline for metric results and patterns of vowel reduction for Barunga Kriol and Australian English, useful for future studies of child speech in these varieties. As rhythm is a major contributor to intelligibility, the findings of this thesis have the potential to inform teaching practice in English as a Second Language

    Prosodic boundary phenomena

    Get PDF
    Synopsis: In spoken language comprehension, the hearer is faced with a more or less continuous stream of auditory information. Prosodic cues, such as pitch movement, pre-boundary lengthening, and pauses, incrementally help to organize the incoming stream of information into prosodic phrases, which often coincide with syntactic units. Prosody is hence central to spoken language comprehension and some models assume that the speaker produces prosody in a consistent and hierarchical fashion. While there is manifold empirical evidence that prosodic boundary cues are reliably and robustly produced and effectively guide spoken sentence comprehension across different populations and languages, the underlying mechanisms and the nature of the prosody-syntax interface still have not been identified sufficiently. This is also reflected in the fact that most models on sentence processing completely lack prosodic information. This edited book volume is grounded in a workshop that was held in 2021 at the annual conference of the Deutsche Gesellschaft für Sprachwissenschaft (DGfS). The five chapters cover selected topics on the production and comprehension of prosodic cues in various populations and languages, all focusing in particular on processing of prosody at structurally relevant prosodic boundaries. Specifically, the book comprises cross-linguistic evidence as well as evidence from non-native listeners, infants, adults, and elderly speakers, highlighting the important role of prosody in both language production and comprehension

    Universal and language-specific processing : the case of prosody

    Get PDF
    A key question in the science of language is how speech processing can be influenced by both language-universal and language-specific mechanisms (Cutler, Klein, & Levinson, 2005). My graduate research aimed to address this question by adopting a crosslanguage approach to compare languages with different phonological systems. Of all components of linguistic structure, prosody is often considered to be one of the most language-specific dimensions of speech. This can have significant implications for our understanding of language use, because much of speech processing is specifically tailored to the structure and requirements of the native language. However, it is still unclear whether prosody may also play a universal role across languages, and very little comparative attempts have been made to explore this possibility. In this thesis, I examined both the production and perception of prosodic cues to prominence and phrasing in native speakers of English and Mandarin Chinese. In focus production, our research revealed that English and Mandarin speakers were alike in how they used prosody to encode prominence, but there were also systematic language-specific differences in the exact degree to which they enhanced the different prosodic cues (Chapter 2). This, however, was not the case in focus perception, where English and Mandarin listeners were alike in the degree to which they used prosody to predict upcoming prominence, even though the precise cues in the preceding prosody could differ (Chapter 3). Further experiments examining prosodic focus prediction in the speech of different talkers have demonstrated functional cue equivalence in prosodic focus detection (Chapter 4). Likewise, our experiments have also revealed both crosslanguage similarities and differences in the production and perception of juncture cues (Chapter 5). Overall, prosodic processing is the result of a complex but subtle interplay of universal and language-specific structure

    PRAAT scripts to measure speed fluency and breakdown fluency in speech automatically

    Get PDF
    Fluency in terms of speed of speech and (lack of) hesitations such as silent and filled pauses (‘uhm’s) is part of oral proficiency. Language assessment rubrics therefore include aspects of fluency. Measuring fluency, however, is highly time-consuming because of the manual labour involved. The current paper aims to automatically measure aspects of L2 fluency, including filled pauses, in both Dutch and English. A revised existing script and a new script for filled pauses are tested on accuracy. We also gauged whether the outcomes of the new script could be used for language assessment purposes by relating the outcomes to human judgements. Without further investigations, the current script should not (yet) be used for the purpose of assessing fluency automatically in (high-stakes) oral proficiency assessment. However, the performance of the scripts for measuring aspects of fluency globally and quickly are promising, especially given their stability in accuracy on new corpora.Teaching and Teacher Learning (ICLON

    The development of automatic speech evaluation system for learners of English

    Get PDF
    制度:新 ; 報告番号:甲3183号 ; 学位の種類:博士(教育学) ; 授与年月日:2010/11/30 ; 早大学位記番号:新547
    corecore