33,031 research outputs found

    Marine Heritage Monitoring with High Resolution Survey Tools: ScapaMAP 2001-2006

    Get PDF
    Archaeologically, marine sites can be just as significant as those on land. Until recently, however, they were not protected in the UK to the same degree, leading to degradation of sites; the difficulty of investigating such sites still makes it problematic and expensive to properly describe, schedule and monitor them. Use of conventional high-resolution survey tools in an archaeological context is changing the economic structure of such investigations however, and it is now possible to remotely but routinely monitor the state of submerged cultural artifacts. Use of such data to optimize expenditure of expensive and rare assets (e.g., divers and on-bottom dive time) is an added bonus. We present here the results of an investigation into methods for monitoring of marine heritage sites, using the remains of the Imperial German Navy (scuttled 1919) in Scapa Flow, Orkney as a case study. Using a baseline bathymetric survey in 2001 and a repeat bathymetric and volumetric survey in 2006, we illustrate the requirements for such surveys over and above normal hydrographic protocols and outline strategies for effective imaging of large wrecks. Suggested methods for manipulation of such data (including processing and visualization) are outlined, and we draw the distinction between products for scientific investigation and those for outreach and education, which have very different requirements. We then describe the use of backscatter and volumetric acoustic data in the investigation of wrecks, focusing on the extra information to be gained from them that is not evident in the traditional bathymetric DTM models or sounding point-cloud representations of data. Finally, we consider the utility of high-resolution survey as part of an integrated site management policy, with particular reference to the economics of marine heritage monitoring and preservation

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas

    Sample positioning in microgravity

    Get PDF
    Repulsion forces arising from laser beams are provided to produce mild positioning forces on a sample in microgravity vacuum environments. The system of the preferred embodiment positions samples using a plurality of pulsed lasers providing opposing repulsion forces. The lasers are positioned around the periphery of a confinement area and expanded to create a confinement zone. The grouped laser configuration, in coordination with position sensing devices, creates a feedback servo whereby stable position control of a sample within microgravity environment can be achieved

    Sample positioning in microgravity

    Get PDF
    Repulsion forces arising from laser beams are provided to produce mild positioning forces on a sample in microgravity vacuum environments. The system of the preferred embodiment positions samples using a plurality of pulsed lasers providing opposing repulsion forces. The lasers are positioned around the periphery of a confinement area and expanded to create a confinement zone. The grouped laser configuration, in coordination with position sensing devices, creates a feedback servo whereby stable position control of a sample within microgravity environment can be achieved

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance

    Detecting fish aggregations from reef habitats mapped with high resolution side scan sonar imagery

    Get PDF
    As part of a multibeam and side scan sonar (SSS) benthic survey of the Marine Conservation District (MCD) south of St. Thomas, USVI and the seasonal closed areas in St. Croix—Lang Bank (LB) for red hind (Epinephelus guttatus) and the Mutton Snapper (MS) (Lutjanus analis) area—we extracted signals from water column targets that represent individual and aggregated fish over various benthic habitats encountered in the SSS imagery. The survey covered a total of 18 km2 throughout the federal jurisdiction fishery management areas. The complementary set of 28 habitat classification digital maps covered a total of 5,462.3 ha; MCDW (West) accounted for 45% of that area, and MCDE (East) 26%, LB 17%, and MS the remaining 13%. With the exception of MS, corals and gorgonians on consolidated habitats were significantly more abundant than submerged aquatic vegetation (SAV) on unconsolidated sediments or unconsolidated sediments. Continuous coral habitat was the most abundant consolidated habitat for both MCDW and MCDE (41% and 43% respectively). Consolidated habitats in LB and MS predominantly consisted of gorgonian plain habitat with 95% and 83% respectively. Coral limestone habitat was more abundant than coral patch habitat; it was found near the shelf break in MS, MCDW, and MCDE. Coral limestone and coral patch habitats only covered LB minimally. The high spatial resolution (0.15 m) of the acquired imagery allowed the detection of differing fish aggregation (FA) types. The largest FA densities were located at MCDW and MCDE over coral communities that occupy up to 70% of the bottom cover. Counts of unidentified swimming objects (USOs), likely representing individual fish, were similar among locations and occurred primarily over sand and shelf edge areas. Fish aggregation school sizes were significantly smaller at MS than the other three locations (MCDW, MCDE, and LB). This study shows the advantages of utilizing SSS in determining fish distributions and density

    Method and apparatus for shaping and enhancing acoustical levitation forces

    Get PDF
    A method and apparatus for enhancing and shaping acoustical levitation forces in a single-axis acoustic resonance system wherein specially shaped drivers and reflectors are utilized to enhance to levitation force and better contain fluid substance by means of field shaping is described

    Providing the Third Dimension: High-resolution Multibeam Sonar as a Tool for Archaeological Investigations - An Example from the D-day Beaches of Normandy

    Get PDF
    In general, marine archaeological investigations begin in the archives, using historic maps, coast surveys, and other materials, to define submerged areas suspected to contain potentially significant historical sites. Following this research phase, a typical archaeological survey uses sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. A clear demonstration of the applicability of highresolution multibeam sonar to wreck and artifact investigations occurred this summer when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller targets such as tanks and trucks. Of particular interest were the well-preserved caissons and blockships of the artificial Mulberry Harbor deployed off Omaha Beach. The near-field beam-forming capability of the Reson 8125 combined with 3-D visualization techniques provided an unprecedented level of detail including the ability to recognize individual components of the wrecks (ramps, gun turrets, hatches, etc.), the state of preservation of the wrecks, and the impact of the wrecks on the surrounding seafloor
    • …
    corecore