21 research outputs found

    Acoustic Based Rendering by Interpolation of the Plenacoustic Function

    Get PDF
    We study the spatialization of the sound field in a room, in particular the evolution of room impulse responses as function of their spatial positions. The presented technique allows us to completely characterize the sound field in any arbitrary location if the sound field is known in a certain finite number of positions. In this paper, we include an analytical solution of the problem for any rectangular room. Further results on reconstruction of the sound field by interpolation of the Plenacoustic function are discussed

    The plenacoustic function and its applications

    Get PDF
    This thesis is a study of the spatial evolution of the sound field. We first present an analysis of the sound field along different geometries. In the case of the sound field studied along a line in a room, we describe a two-dimensional function characterizing the sound field along space and time. Calculating the Fourier transform of this function leads to a spectrum having a butterfly shape. The spectrum is shown to be almost bandlimited along the spatial frequency dimension, which allows the interpolation of the sound field at any position along the line when a sufficient number of microphones is present. Using this Fourier representation of the sound field, we develop a spatial sampling theorem trading off quality of reconstruction with spatial sampling frequency. The study is generalized for planes of microphones and microphones located in three dimensions. The presented theory is compared to simulations and real measurements of room impulse responses. We describe a similar theory for circular arrays of microphones or loudspeakers. Application of this theory is presented for the study of the angular sampling of head-related transfer functions (HRTFs). As a result, we show that to reconstruct HRTFs at any possible angle in the horizontal plane, an angular spacing of 5 degrees is necessary for HRTFs sampled at 44.1 kHz. Because recording that many HRTFs is not easy, we develop interpolation techniques to achieve acceptable results for databases containing two or four times fewer HRTFs. The technique is based on the decomposition of the HRTFs in their carrier and complex envelopes. With the Fourier representation of the sound field, it is then shown how one can correctly obtain all room impulse responses measured along a trajectory when using a moving loudspeaker or microphone. The presented method permits the reconstruction of the room impulse responses at any position along the trajectory, provided that the speed satisfies a given relation. The maximal speed is shown to be dependent on the maximal frequency emitted and the radius of the circle. This method takes into account the Doppler effect present when one element is moving in the scenario. It is then shown that the measurement of HRTFs in the horizontal plane can be achieved in less than one second. In the last part, we model spatio-temporal channel impulse responses between a fixed source and a moving receiver. The trajectory followed by the moving element is modeled as a continuous autoregressive process. The presented model is simple and versatile. It allows the generation of random trajectories with a controlled smoothness. Application of this study can be found in the modeling of acoustic channels for acoustic echo cancellation or of time-varying multipath electromagnetic channels used in mobile wireless communications

    Reproducing Sound Fields Using MIMO Acoustic Channel Inversion

    Get PDF
    Sound fields are essentially band-limited phenomena, both temporally and spatially. This implies that a spatially sampled sound field respecting the Nyquist criterion is effectively equivalent to its continuous original. We describe Sound Field Reconstruction (SFR)---a technique that uses the previously stated observation to express the reproduction of a continuous sound field as an inversion of the discrete acoustic channel from a loudspeaker array to a grid of control points. The acoustic channel is inverted using truncated singular value decomposition (SVD) in order to provide optimal sound field reproduction subject to a limited effort constraint. Additionally, a detailed procedure for obtaining loudspeaker driving signals that involves selection of active loudspeakers, coverage of the listening area with control points, and frequency domain FIR filter design is described. Extensive simulations comparing SFR with Wave Field Synthesis show that on average, SFR provides higher sound field reproduction accuracy

    Dynamic Measurement of Room Impulse Responses using a Moving Microphone

    Get PDF
    A novel technique for the recording of large sets of room impulse responses or head-related transfer functions is presented. The technique uses a microphone or a loudspeaker moving with constant speed. Given a setup (e.g. length of the room impulse response), a careful choice of the recording parameters (excitation signal, speed of movement) is shown to lead to the reconstruction of all impulse responses along the trajectory. In the case of moving element along a circle, the maximal angular speed is given in function of the length of the impulse response, its maximal temporal frequency, the speed of sound propagation and the radius of the circle. As result of this theory, it is shown that head-related transfer functions sampled at 44.1 44.1~kHz can be measured at all angular positions along the horizontal plane in less than one second. The presented theory is compared with a real system implementation using a precision moving microphone holder. The practical setup is discussed together with its limitations

    Digital acoustics: processing wave fields in space and time using DSP tools

    Get PDF
    Systems with hundreds of microphones for acoustic field acquisition, or hundreds of loudspeakers for rendering, have been proposed and built. To analyze, design, and apply such systems requires a framework that allows us to leverage the vast set of tools available in digital signal processing in order to achieve intuitive and efficient algorithms. We thus propose a discrete space-time framework, grounded in classical acoustics, which addresses the discrete nature of the spatial and temporal sampling. In particular, a short-space/time Fourier transform is introduced, which is the natural extension of the localized or short-time Fourier transform. Processing in this intuitive domain allows us to easily devise algorithms for beam-forming, source separation, and multi-channel compression, among other useful tasks. The essential space band-limitedness of the Fourier spectrum is also used to solve the spatial equalization task required for sound field rendering in a region of interest. Examples of applications are show

    Spectromorphology and Spatiomorphology: Wave terrain synthesis as a framework for controlling timbre spatialisation in the frequency domain

    Get PDF
    This research project examines the scope of the technique of timbre spatialisation in the frequency domain that can be realised and controlled in live performance by a single performer. Existing implementations of timbre spatialisation take either a psychoacoustical approach – employing control rate signals for determining azimuth and distance cues – or an adoption of abstract structures for determining frequency-space modulations. This research project aims to overcome the logistical constraints of real-time multi-parameter mapping by developing an overarching multi-signal framework for control: wave terrain synthesis, an interactive control rate and audio rate system. Due to the precise timing requirements of vectorbased FFT processes, spectral control data are generated in frames. Performed in MaxMSP, the project addresses notions of space and immersion using a practice-led methodology contributing to the creation of a number of compositions, performance software and an accompanying exegesis. In addition, the development and evaluation of timbre spatialisation software by the author is accompanied by a categorical definition of the spatial sound shapes generated.https://ro.ecu.edu.au/theses_ebooks/1003/thumbnail.jp

    Spherical harmonics based generalized image source method for simulating room acoustics

    Get PDF
    Allen and Berkley's image source method (ISM) is proven to be a very useful and popular technique for simulating the acoustic room transfer function (RTF) in reverberant rooms. It is based on the assumption that the source and receiver of interest are both omnidirectional. With the inherent directional nature of practical loudspeakers and the increasing use of directional microphones, the above assumption is often invalid. The main objective of this paper is to generalize the frequency domain ISM in the spherical harmonics domain such that it could simulate the RTF between practical transducers with higher-order directivity. This is achieved by decomposing transducer directivity patterns in terms of spherical harmonics and by applying the concept of image sources in spherical harmonics based propagation patterns. Therefore, from now on, any transducer can be modeled in the spherical harmonics domain with a realistic directivity pattern and incorporated with the proposed method to simulate room acoustics more accurately. We show that the proposed generalization also has an alternate use in terms of enabling RTF simulations for moving point-transducers inside pre-defined source and receiver regions.Thanks to Australian Research Council Linkage Grant funding scheme (Project No. LP160100379)

    Spatial auditory display for acoustics and music collections

    Get PDF
    PhDThis thesis explores how audio can be better incorporated into how people access information and does so by developing approaches for creating three-dimensional audio environments with low processing demands. This is done by investigating three research questions. Mobile applications have processor and memory requirements that restrict the number of concurrent static or moving sound sources that can be rendered with binaural audio. Is there a more e cient approach that is as perceptually accurate as the traditional method? This thesis concludes that virtual Ambisonics is an ef cient and accurate means to render a binaural auditory display consisting of noise signals placed on the horizontal plane without head tracking. Virtual Ambisonics is then more e cient than convolution of HRTFs if more than two sound sources are concurrently rendered or if movement of the sources or head tracking is implemented. Complex acoustics models require signi cant amounts of memory and processing. If the memory and processor loads for a model are too large for a particular device, that model cannot be interactive in real-time. What steps can be taken to allow a complex room model to be interactive by using less memory and decreasing the computational load? This thesis presents a new reverberation model based on hybrid reverberation which uses a collection of B-format IRs. A new metric for determining the mixing time of a room is developed and interpolation between early re ections is investigated. Though hybrid reverberation typically uses a recursive lter such as a FDN for the late reverberation, an average late reverberation tail is instead synthesised for convolution reverberation. Commercial interfaces for music search and discovery use little aural information even though the information being sought is audio. How can audio be used in interfaces for music search and discovery? This thesis looks at 20 interfaces and determines that several themes emerge from past interfaces. These include using a two or three-dimensional space to explore a music collection, allowing concurrent playback of multiple sources, and tools such as auras to control how much information is presented. A new interface, the amblr, is developed because virtual two-dimensional spaces populated by music have been a common approach, but not yet a perfected one. The amblr is also interpreted as an art installation which was visited by approximately 1000 people over 5 days. The installation maps the virtual space created by the amblr to a physical space

    On the plausibility of simplified acoustic room representations for listener translation in dynamic binaural auralizations

    Get PDF
    Diese Doktorarbeit untersucht die Wahrnehmung vereinfachter akustischer Raumrepräsentationen in positionsdynamischer Binauralwiedergabe für die Hörertranslation. Die dynamische Binauralsynthese ist eine Audiowiedergabemethode zur Erzeugung räumlicher auditiver Illusionen über Kopfhörer für virtuelle, erweiterte und gemischte Realität (VR/AR/MR). Dabei ist es nun eine typische Anforderung, immersive Inhalte in sechs Freiheitsgraden (6DOF) zu erkunden. Dynamische binaurale Schallfeldimitationen mit hoher physikalischer Genauigkeit zu realisieren, ist meist mit sehr hohem Rechenaufwand verbunden. Frühere psychoakustische Studien weisen jedoch darauf hin, dass Menschen eine begrenzte Empfindlichkeit gegenüber den Details des Schallfelds haben, insbesondere im späten Nachhall. Dies birgt das Potential physikalischer Vereinfachungen bei der positionsdynamischen Auralisation von Räumen. Beispielsweise wurden Konzepte vorgeschlagen, die auf der perzeptiven Mixing Time oder der Hörbarkeitsschwelle von frühen Reflexionen basieren, für welche jedoch eine gründliche psychoakustische Bewertung noch aussteht. Zunächst wurde ein Aufbau zur positionsdynamischen Raumauralisation implementiert und evaluiert. Daran untersucht die Arbeit wesentliche Systemparameter wie die erforderliche räumliche Auflösung eines Positionsrasters für die dynamische Anpassung. Da allgemein etablierte Testmethoden zur wahrnehmungsbezogenen Bewertung von räumlichen auditiven Illusionen unter Berücksichtigung interaktiver Hörertranslation fehlten, untersucht die Arbeit verschiedene Ansätze zur Messung der Plausibilität. Auf dieser Grundlage werden physikalische Vereinfachungen im Verlauf des Schallfeldes in positionsdynamischen binauralen Auralisationen der Raumakustik untersucht. Für die Hauptexperimente wurden binaurale Raumimpulsantworten (BRIRs) entlang einer Linie für die Hörertranslation in einem eher trockenen Hörlabor und einem halligen Seminarraum ähnlicher Größe gemessen. Die erstellten Datensätze enthalten Szenarien von Hörerbewegungen auf eine virtuelle Schallquelle zu, daran vorbei, davon weg oder dahinter. Darüber hinaus betrachten die Untersuchungen zwei Extremfälle der Quellenorientierung, um die Auswirkungen einer Variation der Schallquellenrichtcharakteristik zu berücksichtigen. Die BRIR-Sätze werden systematisch bearbeitet und vereinfacht, um die Auswirkungen auf die Wahrnehmung zu bewerten. Insbesondere das Konzept der perzeptiven Mixing Time und manipulierte räumlich-zeitliche Muster früher Reflexionen dienten als Testfälle in den psychoakustischen Studien. Die Ergebnisse zeigen ein hohes Potential für Vereinfachungen, unterstreichen aber auch die Relevanz der genauen Imitation prominenter früher Reflexionen. Die Ergebnisse bestätigen auch das Konzept der wahrnehmungsbezogenen Mixing Time für die betrachteten Fälle der positionsdynamischen binauralen Wiedergabe. Die Beobachtungen verdeutlichen, dass gängige Testszenarien für Auralisierungen, Interpolation und Extrapolation nicht kritisch genug sind, um allgemeine Schlussfolgerungen über die Eignung der getesteten Rendering-Ansätze zu ziehen. Die Arbeit zeigt Lösungsansätze auf.This thesis investigates the effect of simplified acoustic room representations in position-dynamic binaural audio for listener translation. Dynamic binaural synthesis is an audio reproduction method to create spatial auditory illusions over headphones for virtual, augmented, and mixed reality (AR/VR/MR). It has become a typical demand to explore immersive content in six degrees of freedom (6DOF). Realizing dynamic binaural sound field imitations with high physical accuracy requires high computational effort. However, previous psychoacoustic research indicates that humans have limited sensitivity to the details of the sound field. This fact bears the potential to simplify the physics in position-dynamic room auralizations. For example, concepts based on the perceptual mixing time or the audibility threshold of early reflections have been proposed. This thesis investigates the effect of simplified acoustic room representations in position-dynamic binaural audio for listener translation. First, a setup for position dynamic binaural room auralization was implemented and evaluated. Essential system parameters like the required position grid resolution for the audio reproduction were examined. Due to the lack of generally established test methods for the perceptual evaluation of spatial auditory illusions considering interactive listener translation, this thesis explores different approaches for measuring plausibility. Based on this foundation, this work examines physical impairments and simplifications in the progress of the sound field in position dynamic binaural auralizations of room acoustics. For the main experiments, sets of binaural room impulse responses (BRIRs) were measured along a line for listener translation in a relatively dry listening laboratory and a reverberant seminar room of similar size. These sets include scenarios of walking towards a virtual sound source, past it, away from it, or behind it. The consideration of two extreme cases of source orientation took into account the effects of variations in directivity. The BRIR sets were systematically impaired and simplified to evaluate the perceptual effects. Especially the concept of the perceptual mixing time and manipulated spatiotemporal patterns of early reflections served as test cases. The results reveal a high potential for simplification but also underline the relevance of accurately imitating prominent early reflections. The findings confirm the concept of the perceptual mixing time for the considered cases of position-dynamic binaural audio. The observations highlight that common test scenarios for dynamic binaural rendering approaches are not sufficiently critical to draw general conclusions about their suitability. This thesis proposes strategies to solve this
    corecore