1,003 research outputs found

    Scattering Features for Multimodal Gait Recognition

    Get PDF
    International audienceWe consider the problem of identifying people on the basis of their walk (gait) pattern. Classical approaches to tackle this problem are based on, e.g., video recordings or piezoelec-tric sensors embedded in the floor. In this work, we rely on acoustic and vibration measurements, obtained from a microphone and a geophone sensor, respectively. The contribution of this work is twofold. First, we propose a feature extraction method based on an (untrained) shallow scattering network, specially tailored for the gait signals. Second, we demonstrate that fusing the two modalities improves identification in the practically relevant open set scenario

    Latitude, longitude, and beyond:mining mobile objects' behavior

    Get PDF
    Rapid advancements in Micro-Electro-Mechanical Systems (MEMS), and wireless communications, have resulted in a surge in data generation. Mobility data is one of the various forms of data, which are ubiquitously collected by different location sensing devices. Extensive knowledge about the behavior of humans and wildlife is buried in raw mobility data. This knowledge can be used for realizing numerous viable applications ranging from wildlife movement analysis, to various location-based recommendation systems, urban planning, and disaster relief. With respect to what mentioned above, in this thesis, we mainly focus on providing data analytics for understanding the behavior and interaction of mobile entities (humans and animals). To this end, the main research question to be addressed is: How can behaviors and interactions of mobile entities be determined from mobility data acquired by (mobile) wireless sensor nodes in an accurate and efficient manner? To answer the above-mentioned question, both application requirements and technological constraints are considered in this thesis. On the one hand, applications requirements call for accurate data analytics to uncover hidden information about individual behavior and social interaction of mobile entities, and to deal with the uncertainties in mobility data. Technological constraints, on the other hand, require these data analytics to be efficient in terms of their energy consumption and to have low memory footprint, and processing complexity

    Intelligent Recognition of Acoustic and Vibration Threats for Security Breach Detection, Close Proximity Danger Identification, and Perimeter Protection

    Get PDF
    This article appeared in Homeland Security Affairs (March 2011), Supplement no.3The protection of perimeters in national, agricultural, airport, prison, and military sites, and residential areas against dangerous approaching human and vehicles when using human agents to provide security is expensive or unsafe. Because of this, acoustic/vibration signature identification of approaching human and vehicles threats has attracted increased attention. This paper addresses the development and deployment of three types of acoustic and vibration based smart sensors to identify and report sequential approaching threats prior to the intrusion. More specifically, we have developed: a) acoustic based long range sensor with which vehicles' engine sound and type can be identified, b) vibration based seismic analyzer which discriminates between human footsteps and other seismic events such as those caused by animals, and c) fence breaching vibration sensor which can detect intentional disturbances on the fence and discriminate between climb, kick, rattle, and lean. All of these sensors were designed with several issues in mind, namely, optimized low power usage, a low number of false positives, small size, secure radio communication, and military specifications. The developed vibration based system was installed in an airport with unprotected shore lines in the vicinity of taxi-and run-ways. The system reported an average of less than two false positives per week and zero false negative for the duration of forty-five days. Six fence sensors were installed on the terminal area and end-of runway chain-link fences where there was possibility of intentional fence climbing. The fence sensors reported no false positives for the duration of forty-five days which included several days of seasonal storms.Approved for public release; distribution is unlimited

    A Review of Voice-Base Person Identification: State-of-the-Art

    Get PDF
    Automated person identification and authentication systems are useful for national security, integrity of electoral processes, prevention of cybercrimes and many access control applications. This is a critical component of information and communication technology which is central to national development. The use of biometrics systems in identification is fast replacing traditional methods such as use of names, personal identification numbers codes, password, etc., since nature bestow individuals with distinct personal imprints and signatures. Different measures have been put in place for person identification, ranging from face, to fingerprint and so on. This paper highlights the key approaches and schemes developed in the last five decades for voice-based person identification systems. Voice-base recognition system has gained interest due to its non-intrusive technique of data acquisition and its increasing method of continually studying and adapting to the person’s changes. Information on the benefits and challenges of various biometric systems are also presented in this paper. The present and prominent voice-based recognition methods are discussed. It was observed that these systems application areas have covered intelligent monitoring, surveillance, population management, election forensics, immigration and border control

    Human activity recognition for an intelligent knee orthosis

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia BiomédicaActivity recognition with body-worn sensors is a large and growing field of research. In this thesis we evaluate the possibility to recognize human activities based on data from biosignal sensors solely placed on or under an existing passive knee orthosis, which will produce the needed information to integrate sensors into the orthosis in the future. The development of active orthotic knee devices will allow population to ambulate in a more natural, efficient and less painful manner than they might with a traditional orthosis. Thus, the term ’active orthosis’ refers to a device intended to increase the ambulatory ability of a person suffering from a knee pathology by applying forces to correct the position only when necessary and thereby make usable over longer periods of time. The contribution of this work is the evaluation of the ability to recognize activities with these restrictions on sensor placement as well as providing a proof-of-concept for the development of an activity recognition system for an intelligent orthosis. We use accelerometers and a goniometer placed on the orthosis and Electromyography (EMG) sensors placed on the skin under the orthosis to measure motion and muscle activity respectively. We segment signals in motion primitives semi-automatically and apply Hidden-Markov-Models (HMM) to classify the isolated motion primitives. We discriminate between seven activities like for example walking stairs up and ascend a hill. In a user study with six participants, we evaluate the systems performance for each of the different biosignal modalities alone as well as the combinations of them. For the best performing combination, we reach an average person-dependent accuracy of 98% and a person-independent accuracy of 79%

    GAIT RECOGNITION PROGRESS IN RECOGNIZING IMAGE CHARACTERISTICS

    Get PDF
    We present a humans credentials system centered on ambulation characteristics. This problem is as eminent as acoustic gait recognition. The objective of the scheme is to explore sounds radiated by walking persons (largely the musical note sounds) and identifies those folks. A cyclic model topology is engaged to denote individual gait cycles. This topology permits modeling and detecting individual steps, leading to very favorable identification rates
    • …
    corecore