2,457 research outputs found

    Accuracy Improvement of Neural Networks Through Self-Organizing-Maps over Training Datasets

    Get PDF
    Although it is not a novel topic, pattern recognition has become very popular and relevant in the last years. Different classification systems like neural networks, support vector machines or even complex statistical methods have been used for this purpose. Several works have used these systems to classify animal behavior, mainly in an offline way. Their main problem is usually the data pre-processing step, because the better input data are, the higher may be the accuracy of the classification system. In previous papers by the authors an embedded implementation of a neural network was deployed on a portable device that was placed on animals. This approach allows the classification to be done online and in real time. This is one of the aims of the research project MINERVA, which is focused on monitoring wildlife in Do˜nana National Park using low power devices. Many difficulties were faced when pre-processing methods quality needed to be evaluated. In this work, a novel pre-processing evaluation system based on self-organizing maps (SOM) to measure the quality of the neural network training dataset is presented. The paper is focused on a three different horse gaits classification study. Preliminary results show that a better SOM output map matches with the embedded ANN classification hit improvement.Junta de Andalucía P12-TIC-1300Ministerio de Economía y Competitividad TEC2016-77785-

    Improving acoustic vehicle classification by information fusion

    No full text
    We present an information fusion approach for ground vehicle classification based on the emitted acoustic signal. Many acoustic factors can contribute to the classification accuracy of working ground vehicles. Classification relying on a single feature set may lose some useful information if its underlying sound production model is not comprehensive. To improve classification accuracy, we consider an information fusion diagram, in which various aspects of an acoustic signature are taken into account and emphasized separately by two different feature extraction methods. The first set of features aims to represent internal sound production, and a number of harmonic components are extracted to characterize the factors related to the vehicle’s resonance. The second set of features is extracted based on a computationally effective discriminatory analysis, and a group of key frequency components are selected by mutual information, accounting for the sound production from the vehicle’s exterior parts. In correspondence with this structure, we further put forward a modifiedBayesian fusion algorithm, which takes advantage of matching each specific feature set with its favored classifier. To assess the proposed approach, experiments are carried out based on a data set containing acoustic signals from different types of vehicles. Results indicate that the fusion approach can effectively increase classification accuracy compared to that achieved using each individual features set alone. The Bayesian-based decision level fusion is found fusion is found to be improved than a feature level fusion approac

    Machine Learning Techniques for Differential Diagnosis of Vertigo and Dizziness: A Review.

    Full text link
    Vertigo is a sensation of movement that results from disorders of the inner ear balance organs and their central connections, with aetiologies that are often benign and sometimes serious. An individual who develops vertigo can be effectively treated only after a correct diagnosis of the underlying vestibular disorder is reached. Recent advances in artificial intelligence promise novel strategies for the diagnosis and treatment of patients with this common symptom. Human analysts may experience difficulties manually extracting patterns from large clinical datasets. Machine learning techniques can be used to visualize, understand, and classify clinical data to create a computerized, faster, and more accurate evaluation of vertiginous disorders. Practitioners can also use them as a teaching tool to gain knowledge and valuable insights from medical data. This paper provides a review of the literatures from 1999 to 2021 using various feature extraction and machine learning techniques to diagnose vertigo disorders. This paper aims to provide a better understanding of the work done thus far and to provide future directions for research into the use of machine learning in vertigo diagnosis

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions
    • 

    corecore