115,467 research outputs found

    Acoustic emission frequency discrimination

    Get PDF
    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered

    Method and apparatus for using magneto-acoustic remanence to determine embrittlement

    Get PDF
    A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component are presented. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets and then by turning the magnets off and observing the residual magnetic induction

    Multi-scale Modeling Approach to Acoustic Emission during Plastic Deformation

    Full text link
    We address the long standing problem of the origin of acoustic emission commonly observed during plastic deformation. We propose a frame-work to deal with the widely separated time scales of collective dislocation dynamics and elastic degrees of freedom to explain the nature of acoustic emission observed during the Portevin-Le Chatelier effect. The Ananthakrishna model is used as it explains most generic features of the phenomenon. Our results show that while acoustic emission bursts correlated with stress drops are well separated for the type C serrations, these bursts merge to form nearly continuous acoustic signals with overriding bursts for the propagating type A bands.Comment: 4 pages, 6 figure

    Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    No full text
    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activit

    Damage classification in reinforced concrete beam by acoustic emission signal analysis

    Get PDF
    Acoustic Emission (AE) is a non-destructive testing technique which can be used to identify both the damage level and the nature of that damage such as tensile cracks and shear movements at critical zones within a structure. In this work, the acoustic emission parameters of amplitude, rise time, average frequency and signal strength were used to classify the damage and to determine the damage level. Laboratory experiments were performed on a beam (150 x 250 x 1900 mm). The acoustic emission analysis was successfully used to determine crack movements and classify damage levels in accordance with the observations made during an increasing loading cycle

    Helioseismic analysis of the solar flare-induced sunquake of 2005 January 15

    Full text link
    We report the discovery of one of the most powerful sunquakes detected to date, produced by an X1.2-class solar flare in active region 10720 on 2005 January 15. We used helioseismic holography to image the source of seismic waves emitted into the solar interior from the site of the flare. Acoustic egression power maps at 3 and 6 mHz with a 2 mHz bandpass reveal a compact acoustic source strongly correlated with impulsive hard X-ray and visible-continuum emission along the penumbral neutral line separating the two major opposing umbrae in the δ\delta-configuration sunspot that predominates AR10720. The acoustic emission signatures were directly aligned with both hard X-ray and visible continuum emission that emanated during the flare. The visible continuum emission is estimated at 2.0×10232.0 \times 10^{23} J, approximately 500 times the seismic emission of 4×1020\sim 4 \times 10^{20} J. The flare of 2005 January 15 exhibits the same close spatial alignment between the sources of the seismic emission and impulsive visible continuum emission as previous flares, reinforcing the hypothesis that the acoustic emission may be driven by heating of the low photosphere. However, it is a major exception in that there was no signature to indicate the inclusion of protons in the particle beams thought to supply the energy radiated by the flare. The continued strong coincidence between the sources of seismic emission and impulsive visible continuum emission in the case of a proton-deficient white-light flare lends substantial support to the ``back -- warming'' hypothesis, that the low photosphere is significantly heated by intense Balmer and Paschen continuum-edge radiation from the overlying chromosphere in white-light flares.Comment: 12 pages, 7 figures, published in MNRA

    Constitutive acoustic-emission elastic-stress behavior of magnesium alloy

    Get PDF
    Repeated laoding and unloading of a magnesium alloy below the macroscopic yield stress result in continuous acoustic emissions which are generally repeatable for a given specimen and which are reproducible between different specimens having the same load history. An acoustic emission Bauschinger strain model is proposed to describe the unloading emission behavior. For the limited range of stress examined, loading and unloading stress delays of the order of 50 MN/sq m are observed, and they appear to be dependent upon the direction of loading, the stress rate, and the stress history. The stress delay is hypothesized to be the manifestation of an effective friction stress. The existence of acoustic emission elastic stress constitutive relations is concluded, which provides support for a previously proposed concept for the monitoring of elastic stresses by acoustic emission
    corecore