630 research outputs found

    Frequency hopping in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are nowadays being used to collectively gather and spread information in different kinds of applications, for military, civilian, environmental as well as commercial purposes. Therefore the proper functioning of WSNs under different kinds of environmental conditions, especially hostile environments, is a must and a lot of research currently ongoing. The problems related to the initialization and deployment of WSNs under harsh and resource limited conditions are investigated in this thesis. Frequency hopping (FH) is a spread spectrum technique in which multiple channels are used, or hoped, for communications across the network. This mitigates the worst effects of interference with frequency agile communication systems rather than by brute force approaches. FH is a promising technique for achieving the coexistence of sensor networks with other currently existing wireless systems, and it is successful within the somewhat limited computational capabilities of the sensor nodes hardware radios. In this thesis, a FH scheme for WSNs is implemented for a pair of nodes on an application layer. The merits and demerits of the scheme are studied for different kinds of WSN environments. The implementation has been done using a Sensinode NanoStack, a communication stack for internet protocol (IP) based wireless sensor networks and a Sensinode Devkit, for an IPv6 over low power wireless personal area network (6LoWPAN). The measurements are taken from the developed test bed and channel simulator for different kinds of scenarios. The detailed analysis of the FH scheme is done to determine its usefulness against interference from other wireless systems, especially wireless local area networks (WLANs), and the robustness of the scheme to combat fading or frequency selective fading

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    Interference Mitigation in Multi-Hop Wireless Networks with Advanced Physical-Layer Techniques

    Get PDF
    In my dissertation, we focus on the wireless network coexistence problem with advanced physical-layer techniques. For the first part, we study the problem of Wireless Body Area Networks (WBAN)s coexisting with cross-technology interference (CTI). WBANs face the RF cross-technology interference (CTI) from non-protocol-compliant wireless devices. Werst experimentally characterize the adverse effect on BAN caused by the CTI sources. Then we formulate a joint routing and power control (JRPC) problem, which aims at minimizing energy consumption while satisfying node reachability and delay constraints. We reformulate our problem into a mixed integer linear programing problem (MILP) and then derive the optimal results. A practical JRPC protocol is then proposed. For the second part, we study the coexistence of heterogeneous multi-hop networks with wireless MIMO. We propose a new paradigm, called cooperative interference mitigation (CIM), which makes it possible for disparate networks to cooperatively mitigate the interference to/from each other to enhance everyone\u27s performance. We establish two tractable models to characterize the CIM behaviors of both networks by using full IC (FIC) and receiver-side IC (RIC) only. We propose two bi-criteria optimization problems aiming at maximizing both networks\u27 throughput, while cooperatively canceling the interference between them based on our two models. In the third and fourth parts, we study the coexistence problem with MIMO from a different point of view: the incentive of cooperation. We propose a novel two-round game framework, based on which we derive two networks\u27 equilibrium strategies and the corresponding closed-form utilities. We then extend our game-theoretical analysis to a general multi-hop case, specifically the coexistence problem between primary network and multi-hop secondary network in the cognitive radio networks domain. In the final part, we study the benefits brought by reconfigurable antennas (RA). We systematically exploit the pattern diversity and fast reconfigurability of RAs to enhance the throughput of MWNs. Werst propose a novel link-layer model that captures the dynamic relations between antenna pattern, link coverage and interference. Based on our model, a throughput optimization framework is proposed by jointly considering pattern selection and link scheduling, which is formulated as a mixed integer non-linear programming problem

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Enabling generic wireless coexistence through technology-agnostic dynamic spectrum access

    Get PDF
    Every year that passes, new standardized and proprietary wireless communication technologies are introduced in the market that seeks to find its place within the already highly congested spectrum. Regulation bodies all around the globe are struggling to keep up with the continuously increasing demand for new bands to offer to specific technologies, some of them requiring by design an exclusive frequency band in order to operate efficiently. Even wireless bands offered for public or scientific usage like the ISM bands are becoming the natural habitat of multiple wireless technologies that seek to use or abuse them in order to provide even more bandwidth to their offered applications. Wireless research teams targeting heterogeneous wireless communication coexistence are developing techniques for enabling one-to-one coexistence between various wireless technologies. Can such an exhaustive approach be the solution for N wireless technologies that wish to operate in the same band? We believe that a one-to-one approach is inefficient and cannot lead to a generic coexistence paradigm, applicable to every existing or new wireless communication technology that will arise in the future. Can another approach provide a more generic solution in terms of frequency reuse and coexistence compared to the one-dimensional frequency separation approach commonly used in commercial deployments today. Can such a generic approach provide a simple and easily adoptable coexistence model for existing technologies? In this paper we present a new generic medium sharing model that solves the huge coexistence problems observed today in a simple and efficient way. Our approach is technology-agnostic and compatible with all existing wireless communication technologies and also has the capability to support emerging ones with minimum overhead

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore