256 research outputs found

    Optimización del rendimiento y la eficiencia energética en sistemas masivamente paralelos

    Get PDF
    RESUMEN Los sistemas heterogéneos son cada vez más relevantes, debido a sus capacidades de rendimiento y eficiencia energética, estando presentes en todo tipo de plataformas de cómputo, desde dispositivos embebidos y servidores, hasta nodos HPC de grandes centros de datos. Su complejidad hace que sean habitualmente usados bajo el paradigma de tareas y el modelo de programación host-device. Esto penaliza fuertemente el aprovechamiento de los aceleradores y el consumo energético del sistema, además de dificultar la adaptación de las aplicaciones. La co-ejecución permite que todos los dispositivos cooperen para computar el mismo problema, consumiendo menos tiempo y energía. No obstante, los programadores deben encargarse de toda la gestión de los dispositivos, la distribución de la carga y la portabilidad del código entre sistemas, complicando notablemente su programación. Esta tesis ofrece contribuciones para mejorar el rendimiento y la eficiencia energética en estos sistemas masivamente paralelos. Se realizan propuestas que abordan objetivos generalmente contrapuestos: se mejora la usabilidad y la programabilidad, a la vez que se garantiza una mayor abstracción y extensibilidad del sistema, y al mismo tiempo se aumenta el rendimiento, la escalabilidad y la eficiencia energética. Para ello, se proponen dos motores de ejecución con enfoques completamente distintos. EngineCL, centrado en OpenCL y con una API de alto nivel, favorece la máxima compatibilidad entre todo tipo de dispositivos y proporciona un sistema modular extensible. Su versatilidad permite adaptarlo a entornos para los que no fue concebido, como aplicaciones con ejecuciones restringidas por tiempo o simuladores HPC de dinámica molecular, como el utilizado en un centro de investigación internacional. Considerando las tendencias industriales y enfatizando la aplicabilidad profesional, CoexecutorRuntime proporciona un sistema flexible centrado en C++/SYCL que dota de soporte a la co-ejecución a la tecnología oneAPI. Este runtime acerca a los programadores al dominio del problema, posibilitando la explotación de estrategias dinámicas adaptativas que mejoran la eficiencia en todo tipo de aplicaciones.ABSTRACT Heterogeneous systems are becoming increasingly relevant, due to their performance and energy efficiency capabilities, being present in all types of computing platforms, from embedded devices and servers to HPC nodes in large data centers. Their complexity implies that they are usually used under the task paradigm and the host-device programming model. This strongly penalizes accelerator utilization and system energy consumption, as well as making it difficult to adapt applications. Co-execution allows all devices to simultaneously compute the same problem, cooperating to consume less time and energy. However, programmers must handle all device management, workload distribution and code portability between systems, significantly complicating their programming. This thesis offers contributions to improve performance and energy efficiency in these massively parallel systems. The proposals address the following generally conflicting objectives: usability and programmability are improved, while ensuring enhanced system abstraction and extensibility, and at the same time performance, scalability and energy efficiency are increased. To achieve this, two runtime systems with completely different approaches are proposed. EngineCL, focused on OpenCL and with a high-level API, provides an extensible modular system and favors maximum compatibility between all types of devices. Its versatility allows it to be adapted to environments for which it was not originally designed, including applications with time-constrained executions or molecular dynamics HPC simulators, such as the one used in an international research center. Considering industrial trends and emphasizing professional applicability, CoexecutorRuntime provides a flexible C++/SYCL-based system that provides co-execution support for oneAPI technology. This runtime brings programmers closer to the problem domain, enabling the exploitation of dynamic adaptive strategies that improve efficiency in all types of applications.Funding: This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant), the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and PID2019-105660RB-C22. This work has also been partially supported by the Mont-Blanc 3: European Scalable and Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No. 671697) from the European Union’s Horizon 2020 Research and Innovation Programme (H2020 Programme). Some activities have also been funded by the Spanish Science and Technology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network). The Integration II: Hybrid programming models of Chapter 4 has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, the author gratefully acknowledges the support of the SPMT Department of the High Performance Computing Center Stuttgart (HLRS)

    FPGA-Based Acceleration of the Self-Organizing Map (SOM) Algorithm using High-Level Synthesis

    Get PDF
    One of the fastest growing and the most demanding areas of computer science is Machine Learning (ML). Self-Organizing Map (SOM), categorized as unsupervised ML, is a popular data-mining algorithm widely used in Artificial Neural Network (ANN) for mapping high dimensional data into low dimensional feature maps. SOM, being computationally intensive, requires high computational time and power when dealing with large datasets. Acceleration of many computationally intensive algorithms can be achieved using Field-Programmable Gate Arrays (FPGAs) but it requires extensive hardware knowledge and longer development time when employing traditional Hardware Description Language (HDL) based design methodology. Open Computing Language (OpenCL) is a standard framework for writing parallel computing programs that execute on heterogeneous computing systems. Intel FPGA Software Development Kit for OpenCL (IFSO) is a High-Level Synthesis (HLS) tool that provides a more efficient alternative to HDL-based design. This research presents an optimized OpenCL implementation of SOM algorithm on Stratix V and Arria 10 FPGAs using IFSO. Compared to recent SOM implementations on Central Processing Unit (CPU) and Graphics Processing Unit (GPU), our OpenCL implementation on FPGAs provides superior speed performance and power consumption results. Stratix V achieves speedup of 1.41x - 16.55x compared to AMD and Intel CPU and 2.18x compared to Nvidia GPU whereas Arria 10 achieves speedup of 1.63x - 19.15x compared to AMD and Intel CPU and 2.52x compared to Nvidia GPU. In terms of power consumption, Stratix V is 35.53x and 42.53x whereas Arria 10 is 15.82x and 15.93x more power efficient compared to CPU and GPU respectively

    Optimization of the AGATA pulse shape analysis algorithm using graphics processing units

    Get PDF
    Questo progetto di tesi affronta il problema della velocità di esecuzione dell'algoritmo GridSearch nell'ambito dell'analisi di forma di impulso per i segnali acquisiti dallo spettrometro gamma AGATA. Il problema viene risolto fornendo un'implementazione dell'algoritmo stesso, in linguaggio OpenCL, in modo da sfruttare la potenza di calcolo messa a disposizione dalle GPU delle moderne schede graficheope

    Energy-efficient hardware design based on high-level synthesis

    Get PDF
    This dissertation describes research activities broadly concerning the area of High-level synthesis (HLS), but more specifically, regarding the HLS-based design of energy-efficient hardware (HW) accelerators. HW accelerators, mostly implemented on FPGAs, are integral to the heterogeneous architectures employed in modern high performance computing (HPC) systems due to their ability to speed up the execution while dramatically reducing the energy consumption of computationally challenging portions of complex applications. Hence, the first activity was regarding an HLS-based approach to directly execute an OpenCL code on an FPGA instead of its traditional GPU-based counterpart. Modern FPGAs offer considerable computational capabilities while consuming significantly smaller power as compared to high-end GPUs. Several different implementations of the K-Nearest Neighbor algorithm were considered on both FPGA- and GPU-based platforms and their performance was compared. FPGAs were generally more energy-efficient than the GPUs in all the test cases. Eventually, we were also able to get a faster (in terms of execution time) FPGA implementation by using an FPGA-specific OpenCL coding style and utilizing suitable HLS directives. The second activity was targeted towards the development of a methodology complementing HLS to automatically derive power optimization directives (also known as "power intent") from a system-level design description and use it to drive the design steps after HLS, by producing a directive file written using the common power format (CPF) to achieve power shut-off (PSO) in case of an ASIC design. The proposed LP-HLS methodology reduces the design effort by enabling designers to infer low power information from the system-level description of a design rather than at the RTL. This methodology required a SystemC description of a generic power management module to describe the design context of a HW module also modeled in SystemC, along with the development of a tool to automatically produce the CPF file to accomplish PSO. Several test cases were considered to validate the proposed methodology and the results demonstrated its ability to correctly extract the low power information and apply it to achieve power optimization in the backend flow

    PERFORMANCE EVALUATION OF MEMORY AND COMPUTATIONALLY BOUND CHEMISTRY APPLICATIONS ON STREAMING GPGPUS AND MULTI-CORE X86 CPUS

    Get PDF
    In recent years, multi-core processors have come to dominate the field in desktop and high performance computing. Graphics processors traditionally used in CAD, video games, and other 3-d applications, have become more programmable and are now suitable for general purpose computing. This thesis explores multi-core processors and GPU performance and limitations in two computational chemistry applications: a memory bound component of ab-initio modeling and a computationally bound Monte Carlo simulation. For the applications presented in this thesis, exploiting multiple processors is done using a variety of tools and languages including OpenMP and MKL. Brook+ and the Compute Abstraction Layer streaming environments are used to accelerate applications on AMD GPUs. This thesis gives qualitative assertions about these languages and tools regarding ease of use and optimization in addition to quantitative analyses of performance. GPUs can yield modest performance improvements with little effort in some applications and even larger speedups with simple optimizations

    Efficient Algorithms And Optimizations For Scientific Computing On Many-Core Processors

    Get PDF
    Designing efficient algorithms for many-core and multicore architectures requires using different strategies to allow for the best exploitation of the hardware resources on those architectures. Researchers have ported many scientific applications to modern many-core and multicore parallel architectures, and by doing so they have achieved significant speedups over running on single CPU cores. While many applications have achieved significant speedups, some applications still require more effort to accelerate due to their inherently serial behavior. One class of applications that has this serial behavior is the Monte Carlo simulations. Monte Carlo simulations have been used to simulate many problems in statistical physics and statistical mechanics that were not possible to simulate using Molecular Dynamics. While there are a fair number of well-known and recognized GPU Molecular Dynamics codes, the existing Monte Carlo ensemble simulations have not been ported to the GPU, so they are relatively slow and could not run large systems in a reasonable amount of time. Due to the previously mentioned shortcomings of existing Monte Carlo ensemble codes and due to the interest of researchers to have a fast Monte Carlo simulation framework that can simulate large systems, a new GPU framework called GOMC is implemented to simulate different particle and molecular-based force fields and ensembles. GOMC simulates different Monte Carlo ensembles such as the canonical, grand canonical, and Gibbs ensembles. This work describes many challenges in developing a GPU Monte Carlo code for such ensembles and how I addressed these challenges. This work also describes efficient many-core and multicore large-scale energy calculations for Monte Carlo Gibbs ensemble using cell lists. Designing Monte Carlo molecular simulations is challenging as they have less computation and parallelism when compared to similar molecular dynamics applications. The modified cell list allows for more speedup gains for energy calculations on both many-core and multicore architectures when compared to other implementations without using the conventional cell lists. The work presents results and analysis of the cell list algorithms for each one of the parallel architectures using top of the line GPUs, CPUs, and Intel’s Phi coprocessors. In addition, the work evaluates the performance of the cell list algorithms for different problem sizes and different radial cutoffs. In addition, this work evaluates two cell list approaches, a hybrid MPI+OpenMP approach and a hybrid MPI+CUDA approach. The cell list methods are evaluated on a small cluster of multicore CPUs, Intel Phi coprocessors, and GPUs. The performance results are evaluated using different combinations of MPI processes, threads, and problem sizes. Another application presented in this dissertation involves the understanding of the properties of crystalline materials, and their design and control. Recent developments include the introduction of new models to simulate system behavior and properties that are of large experimental and theoretical interest. One of those models is the Phase-Field Crystal (PFC) model. The PFC model has enabled researchers to simulate 2D and 3D crystal structures and study defects such as dislocations and grain boundaries. In this work, GPUs are used to accelerate various dynamic properties of polycrystals in the 2D PFC model. Some properties require very intensive computation that may involve hundreds of thousands of atoms. The GPU implementation has achieved significant speedups of more than 46 times for some large systems simulations

    An implementation of a numerical advection equation solver on modern graphics cards using compute unified device architecture

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2010"In the past decade, the Graphics Processing Unit (GPU) is reported to have become a powerful general-purpose computation platform for various application areas. The Arctic Region Supercomputing Center (ARSC) intends to assess the capability of this emerging computing tool so that they may enlist it as component of supercomputing systems, but at a lower cost. This thesis reports on parallelization, on both GPU and CPU, of a numerical algorithm named the Total Variation Diminishing (TVD) scheme, which is used in the Eulerian Polar Parallel Ionospheric Model (EPPIM) developed at UAF's Geophysical Institute (GI) and ARSC. The GPU (single NVIDIA Tesla® C2050) and CPU (dual Intel Xeon x5560) implementations were parallelized using the Compute Unified Device Architecture (CUDA) language and OpenMP with the C language respectively. A speedup of up to 175x was observed when comparing the CUDA/GPU implementation to the non-parallelized CPU version, and of almost 40x when comparing to the parallelized CPU version. Results also demonstrated an average floating-point-operation rate of 107 GFLOPs, 351 times more than that the CPU version can offer. However, there is still space for improvement as only one tenth of the peak theoretical performance of the C2050 was achieved"--Leaf iii.1. Introduction -- 1.1. Motivation -- 1.2. Similar work -- 1.3. Contribution -- 1.4. Thesis outline -- 2. Background -- 2.1. Evolution of GPU computing -- 2.2. Compute Unified Device Architecture -- 2.2.1. Hardware architecture -- 2.2.2. Software architecture -- 2.2.3. Terminology -- 2.2.4. Compilation workflow -- 2.2.5. CUDA memory model -- 2.2.6. Programming methodology -- 2.2.7. Performance considerations for scientific computing -- 2.3. Mathematical background -- 2.3.1. Continuity equation -- 2.3.2. Numerical schemes -- 2.3.3. The corner transport upwind scheme -- 2.3.4. The Lax-Wendroff scheme -- 2.3.5. The TVD scheme -- 3. Algorithms -- 3.1. Introduction -- 3.2. The serial algorithm -- 3.3. The parallel algorithms -- 4. Performance test and analysis -- 4.1. Hardware configuration -- 4.2. Methodology -- 4.2.1. Testing approach -- 4.2.2. Testing environment -- 4.2.3. Validation -- 4.3. Results and analysis -- 4.3.1. Serial implementation -- 4.3.2. The single-kernal parallel implementation -- 4.3.3. The multi-kernal parallel implementation -- 5. Conclusions and future work -- 5.1. Conclusions -- 5.2. Future work -- References -- Appendix
    corecore