13 research outputs found

    Achieving Robotically Peeled Lettuce

    Get PDF
    Robotic technologies are being increasingly applied to agriculture, in particular to harvesting. Some types of produce such as iceberg lettuce require additional processing after harvesting in order to satisfy the needs of the end-user or customer. Lettuce must have its outer leaves removed, a task that is currently performed manually. The leaf removal task represents a challenging vision and manipulation problem: the lettuce is in a random pose on a flat surface, from which the outermost leaves must be removed quickly and without causing damage. This letter presents a novel vision pipeline and suction removal system that enables robotic lettuce leaf removal. A suction nozzle and control procedure are used for the removal itself, relying on the orientation estimation and stem detection provided by the vision pipeline. To the best of the author's knowledge, this is the first robotic lettuce leaf peeling system

    Life Support Baseline Values and Assumptions Document

    Get PDF
    The Baseline Values and Assumptions Document (BVAD) provides analysts, modelers, and other life support researchers with a common set of values and assumptions which can be used as a baseline in their studies. This baseline, in turn, provides a common point of origin from which many studies in the community may depart, making research results easier to compare and providing researchers with reasonable values to assume for areas outside their experience. This document identifies many specific physical quantities that define life support systems, serving as a general reference for spacecraft life support system technology developers

    Wings in Orbit: Scientific and Engineering Legacies of the Space Shuttle, 1971-2010

    Get PDF
    The Space Shuttle is an engineering marvel perhaps only exceeded by the station itself. The shuttle was based on the technology of the 1960s and early 1970s. It had to overcome significant challenges to make it reusable. Perhaps the greatest challenges were the main engines and the Thermal Protection System. The program has seen terrible tragedy in its 3 decades of operation, yet it has also seen marvelous success. One of the most notable successes is the Hubble Space Telescope, a program that would have been a failure without the shuttle's capability to rendezvous, capture, repair, as well as upgrade. Now Hubble is a shining example of success admired by people around the world. As the program comes to a close, it is important to capture the legacy of the shuttle for future generations. That is what "Wings In Orbit" does for space fans, students, engineers, and scientists. This book, written by the men and women who made the program possible, will serve as an excellent reference for building future space vehicles. We are proud to have played a small part in making it happen. Our journey to document the scientific and engineering accomplishments of this magnificent winged vehicle began with an audacious proposal: to capture the passion of those who devoted their energies to its success while answering the question "What are the most significant accomplishments?" of the longestoperating human spaceflight program in our nation s history. This is intended to be an honest, accurate, and easily understandable account of the research and innovation accomplished during the era

    Fruit Metabolism and Metabolomics

    Get PDF
    Over the past ten years, metabolomics strategies have allowed the relative or absolute quantitation of metabolite levels for the study of various biological questions in plant sciences. For fruit studies, in particular, they have participated in the identification of the genes underpinning fruit development and ripening. This book proposes examples of the current use of metabolomics studies of fruit for basic research or practical applications. It includes articles about several tropical and temperate fruit species. The studies concern fruit biochemical phenotyping, fruit metabolism during development and after harvest, including primary and specialized metabolisms, or bioactive compounds involved in fruit growth and environmental responses. The analytical strategies used are based mostly on liquid or gas chromatography coupled with mass spectrometry, but also on nuclear magnetic resonance and near-infrared spectroscopy. The effect of genotype, stages of development, or fruit tissue type on metabolomic profiles and corresponding metabolism regulations are addressed for fruit metabolism studies. The interest in combining other omics with metabolomics is also exemplified

    Achieving robotically peeled lettuce

    No full text
    Robotic technologies are being increasingly applied to agriculture, in particular to harvesting. Some types of produce such as iceberg lettuce require additional processing after harvesting in order to satisfy the needs of the end-user or customer. Lettuce must have its outer leaves removed, a task that is currently performed manually. The leaf removal task represents a challenging vision and manipulation problem: the lettuce is in a random pose on a flat surface, from which the outermost leaves must be removed quickly and without causing damage. This letter presents a novel vision pipeline and suction removal system that enables robotic lettuce leaf removal. A suction nozzle and control procedure are used for the removal itself, relying on the orientation estimation and stem detection provided by the vision pipeline. To the best of the author's knowledge, this is the first robotic lettuce leaf peeling system

    Achieving Robotically Peeled Lettuce

    No full text
    Robotic technologies are being increasingly applied to agriculture, in particular to harvesting. Some types of produce such as iceberg lettuce require additional processing after harvesting in order to satisfy the needs of the end-user or customer. Lettuce must have its outer leaves removed, a task that is currently performed manually. The leaf removal task represents a challenging vision and manipulation problem: the lettuce is in a random pose on a flat surface, from which the outermost leaves must be removed quickly and without causing damage. This letter presents a novel vision pipeline and suction removal system that enables robotic lettuce leaf removal. A suction nozzle and control procedure are used for the removal itself, relying on the orientation estimation and stem detection provided by the vision pipeline. To the best of the author's knowledge, this is the first robotic lettuce leaf peeling system

    Achieving Robotically Peeled Lettuce

    No full text
    Robotic technologies are being increasingly applied to agriculture, in particular to harvesting. Some types of produce such as iceberg lettuce require additional processing after harvesting in order to satisfy the needs of the end-user or customer. Lettuce must have its outer leaves removed, a task that is currently performed manually. The leaf removal task represents a challenging vision and manipulation problem: the lettuce is in a random pose on a flat surface, from which the outermost leaves must be removed quickly and without causing damage. This letter presents a novel vision pipeline and suction removal system that enables robotic lettuce leaf removal. A suction nozzle and control procedure are used for the removal itself, relying on the orientation estimation and stem detection provided by the vision pipeline. To the best of the author's knowledge, this is the first robotic lettuce leaf peeling system

    Achieving robotically peeled lettuce

    No full text
    Robotic technologies are being increasingly applied to agriculture, in particular to harvesting. Some types of produce such as iceberg lettuce require additional processing after harvesting in order to satisfy the needs of the end-user or customer. Lettuce must have its outer leaves removed, a task that is currently performed manually. The leaf removal task represents a challenging vision and manipulation problem: the lettuce is in a random pose on a flat surface, from which the outermost leaves must be removed quickly and without causing damage. This letter presents a novel vision pipeline and suction removal system that enables robotic lettuce leaf removal. A suction nozzle and control procedure are used for the removal itself, relying on the orientation estimation and stem detection provided by the vision pipeline. To the best of the author's knowledge, this is the first robotic lettuce leaf peeling system
    corecore