13,086 research outputs found

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Real-time characteristics of switched ethernet for "1553B" -embedded applications : simulation and analysis

    Get PDF
    In our previous work , Full Duplex Switched Ethernet was put forward as an attractive candidate to replace the MIL-STD 1553B data bus, in next generation "1553B"-embedded applications. An analytic study was conducted, using the Network Calculus formalism, to evaluate the deterministic guarantees offered by our proposal. Obtained results showed the effectiveness of traffic shaping techniques, combined with priority handling mechanisms on Full Duplex Switched Ethernet in order to satisfy 1553B-like real-time constraints. In this paper, we extend this work by the use of simulation. This gives the possibility to capture additional characteristics of the proposed architecture with respect to the analytical study, which was basically used to evaluate worst cases and deterministic guarantees. Hence, to assess the real-time characteristics of our proposed interconnection technology, the results yielded by simulation are discussed and average latencies distributions are considered

    Optical network technologies for future digital cinema

    Get PDF
    Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow

    Network Neutrality and the Evolution of the Internet

    Get PDF
    In order to create incentives for Internet traffic providers not to discriminate with respect to certain applications on the basis of network capacity requirements, the concept of market driven network neutrality is introduced. Its basic characteristics are that all applications are bearing the opportunity costs of the required traffic capacities. An economic framework for market driven network neutrality in broadband Internet is provided, consisting of congestion pricing and quality of service differentiation. However, network neutrality regulation with its reference point of the traditional TCP would result in regulatory micromanagement of traffic network management. --Broadband Internet,network neutrality,quality of service differentiation,congestion pricing,interclass externality pricing,interconnection agreements
    • …
    corecore