398 research outputs found

    SecureBoost Hyperparameter Tuning via Multi-Objective Federated Learning

    Full text link
    SecureBoost is a tree-boosting algorithm leveraging homomorphic encryption to protect data privacy in vertical federated learning setting. It is widely used in fields such as finance and healthcare due to its interpretability, effectiveness, and privacy-preserving capability. However, SecureBoost suffers from high computational complexity and risk of label leakage. To harness the full potential of SecureBoost, hyperparameters of SecureBoost should be carefully chosen to strike an optimal balance between utility, efficiency, and privacy. Existing methods either set hyperparameters empirically or heuristically, which are far from optimal. To fill this gap, we propose a Constrained Multi-Objective SecureBoost (CMOSB) algorithm to find Pareto optimal solutions that each solution is a set of hyperparameters achieving optimal tradeoff between utility loss, training cost, and privacy leakage. We design measurements of the three objectives. In particular, the privacy leakage is measured using our proposed instance clustering attack. Experimental results demonstrate that the CMOSB yields not only hyperparameters superior to the baseline but also optimal sets of hyperparameters that can support the flexible requirements of FL participants.Comment: FL-ICAI'2

    Fair and Private Data Preprocessing through Microaggregation

    Get PDF
    Privacy protection for personal data and fairness in automated decisions are fundamental requirements for responsible Machine Learning. Both may be enforced through data preprocessing and share a common target: data should remain useful for a task, while becoming uninformative of the sensitive information. The intrinsic connection between privacy and fairness implies that modifications performed to guarantee one of these goals, may have an effect on the other, e.g., hiding a sensitive attribute from a classification algorithm might prevent a biased decision rule having such attribute as a criterion. This work resides at the intersection of algorithmic fairness and privacy. We show how the two goals are compatible, and may be simultaneously achieved, with a small loss in predictive performance. Our results are competitive with both state-of-the-art fairness correcting algorithms and hybrid privacy-fairness methods. Experiments were performed on three widely used benchmark datasets: Adult Income, COMPAS, and German Credit

    Fair and Private Data Preprocessing through Microaggregation

    Get PDF
    Copyright \ua9 2023 held by the owner/author(s).Privacy protection for personal data and fairness in automated decisions are fundamental requirements for responsible Machine Learning. Both may be enforced through data preprocessing and share a common target: data should remain useful for a task, while becoming uninformative of the sensitive information. The intrinsic connection between privacy and fairness implies that modifications performed to guarantee one of these goals, may have an effect on the other, e.g., hiding a sensitive attribute from a classification algorithm might prevent a biased decision rule having such attribute as a criterion. This work resides at the intersection of algorithmic fairness and privacy. We show how the two goals are compatible, and may be simultaneously achieved, with a small loss in predictive performance. Our results are competitive with both state-of-the-art fairness correcting algorithms and hybrid privacy-fairness methods. Experiments were performed on three widely used benchmark datasets: Adult Income, COMPAS, and German Credit

    A Design Framework for Strongly χ2\chi^2-Private Data Disclosure

    Full text link
    In this paper, we study a stochastic disclosure control problem using information-theoretic methods. The useful data to be disclosed depend on private data that should be protected. Thus, we design a privacy mechanism to produce new data which maximizes the disclosed information about the useful data under a strong χ2\chi^2-privacy criterion. For sufficiently small leakage, the privacy mechanism design problem can be geometrically studied in the space of probability distributions by a local approximation of the mutual information. By using methods from Euclidean information geometry, the original highly challenging optimization problem can be reduced to a problem of finding the principal right-singular vector of a matrix, which characterizes the optimal privacy mechanism. In two extensions we first consider a scenario where an adversary receives a noisy version of the user's message and then we look for a mechanism which finds UU based on observing XX, maximizing the mutual information between UU and YY while satisfying the privacy criterion on UU and ZZ under the Markov chain (Z,Y)−X−U(Z,Y)-X-U.Comment: 16 pages, 2 figure

    Batching of Tasks by Users of Pseudonymous Forums: Anonymity Compromise and Protection

    Full text link
    There are a number of forums where people participate under pseudonyms. One example is peer review, where the identity of reviewers for any paper is confidential. When participating in these forums, people frequently engage in "batching": executing multiple related tasks (e.g., commenting on multiple papers) at nearly the same time. Our empirical analysis shows that batching is common in two applications we consider \unicode{x2013} peer review and Wikipedia edits. In this paper, we identify and address the risk of deanonymization arising from linking batched tasks. To protect against linkage attacks, we take the approach of adding delay to the posting time of batched tasks. We first show that under some natural assumptions, no delay mechanism can provide a meaningful differential privacy guarantee. We therefore propose a "one-sided" formulation of differential privacy for protecting against linkage attacks. We design a mechanism that adds zero-inflated uniform delay to events and show it can preserve privacy. We prove that this noise distribution is in fact optimal in minimizing expected delay among mechanisms adding independent noise to each event, thereby establishing the Pareto frontier of the trade-off between the expected delay for batched and unbatched events. Finally, we conduct a series of experiments on Wikipedia and Bitcoin data that corroborate the practical utility of our algorithm in obfuscating batching without introducing onerous delay to a system

    Fairness Under Demographic Scarce Regime

    Full text link
    Most existing works on fairness assume the model has full access to demographic information. However, there exist scenarios where demographic information is partially available because a record was not maintained throughout data collection or due to privacy reasons. This setting is known as demographic scarce regime. Prior research have shown that training an attribute classifier to replace the missing sensitive attributes (proxy) can still improve fairness. However, the use of proxy-sensitive attributes worsens fairness-accuracy trade-offs compared to true sensitive attributes. To address this limitation, we propose a framework to build attribute classifiers that achieve better fairness-accuracy trade-offs. Our method introduces uncertainty awareness in the attribute classifier and enforces fairness on samples with demographic information inferred with the lowest uncertainty. We show empirically that enforcing fairness constraints on samples with uncertain sensitive attributes is detrimental to fairness and accuracy. Our experiments on two datasets showed that the proposed framework yields models with significantly better fairness-accuracy trade-offs compared to classic attribute classifiers. Surprisingly, our framework outperforms models trained with constraints on the true sensitive attributes.Comment: 14 pages, 7 page

    A Framework for Approximate Optimization of BoT Application Deployment in Hybrid Cloud Environment

    Get PDF
    We adopt a systematic approach to investigate the efficiency of near-optimal deployment of large-scale CPU-intensive Bag-of-Task applications running on cloud resources with the non-proportional cost to performance ratios. Our analytical solutions perform in both known and unknown running time of the given application. It tries to optimize users' utility by choosing the most desirable tradeoff between the make-span and the total incurred expense. We propose a schema to provide a near-optimal deployment of BoT application regarding users' preferences. Our approach is to provide user with a set of Pareto-optimal solutions, and then she may select one of the possible scheduling points based on her internal utility function. Our framework can cope with uncertainty in the tasks' execution time using two methods, too. First, an estimation method based on a Monte Carlo sampling called AA algorithm is presented. It uses the minimum possible number of sampling to predict the average task running time. Second, assuming that we have access to some code analyzer, code profiling or estimation tools, a hybrid method to evaluate the accuracy of each estimation tool in certain interval times for improving resource allocation decision has been presented. We propose approximate deployment strategies that run on hybrid cloud. In essence, proposed strategies first determine either an estimated or an exact optimal schema based on the information provided from users' side and environmental parameters. Then, we exploit dynamic methods to assign tasks to resources to reach an optimal schema as close as possible by using two methods. A fast yet simple method based on First Fit Decreasing algorithm, and a more complex approach based on the approximation solution of the transformed problem into a subset sum problem. Extensive experiment results conducted on a hybrid cloud platform confirm that our framework can deliver a near optimal solution respecting user's utility function

    Optimization of privacy-utility trade-offs under informational self-determination

    No full text
    The pervasiveness of Internet of Things results in vast volumes of personal data generated by smart devices of users (data producers) such as smart phones, wearables and other embedded sensors. It is a common requirement, especially for Big Data analytics systems, to transfer these large in scale and distributed data to centralized computational systems for analysis. Nevertheless, third parties that run and manage these systems (data consumers) do not always guarantee users’ privacy. Their primary interest is to improve utility that is usually a metric related to the performance, costs and the quality of service. There are several techniques that mask user-generated data to ensure privacy, e.g. differential privacy. Setting up a process for masking data, referred to in this paper as a ‘privacy setting’, decreases on the one hand the utility of data analytics, while, on the other hand, increases privacy. This paper studies parameterizations of privacy settings that regulate the trade-off between maximum utility, minimum privacy and minimum utility, maximum privacy, where utility refers to the accuracy in the estimations of aggregation functions. Privacy settings can be universally applied as system-wide parameterizations and policies (homogeneous data sharing). Nonetheless they can also be applied autonomously by each user or decided under the influence of (monetary) incentives (heterogeneous data sharing). This latter diversity in data sharing by informational self-determination plays a key role on the privacy-utility trajectories as shown in this paper both theoretically and empirically. A generic and novel computational framework is introduced for measuring privacy-utility trade-offs and their Pareto optimization. The framework computes a broad spectrum of such trade-offs that form privacy-utility trajectories under homogeneous and heterogeneous data sharing. The practical use of the framework is experimentally evaluated using real-world data from a Smart Grid pilot project in which energy consumers protect their privacy by regulating the quality of the shared power demand data, while utility companies make accurate estimations of the aggregate load in the network to manage the power grid. Over 20,000 differential privacy settings are applied to shape the computational trajectories that in turn provide a vast potential for data consumers and producers to participate in viable participatory data sharing systems

    Privacy-preserving human mobility and activity modelling

    Get PDF
    The exponential proliferation of digital trends and worldwide responses to the COVID-19 pandemic thrust the world into digitalization and interconnectedness, pushing increasingly new technologies/devices/applications into the market. More and more intimate data of users are collected for positive analysis purposes of improving living well-being but shared with/without the user's consent, emphasizing the importance of making human mobility and activity models inclusive, private, and fair. In this thesis, I develop and implement advanced methods/algorithms to model human mobility and activity in terms of temporal-context dynamics, multi-occupancy impacts, privacy protection, and fair analysis. The following research questions have been thoroughly investigated: i) whether the temporal information integrated into the deep learning networks can improve the prediction accuracy in both predicting the next activity and its timing; ii) how is the trade-off between cost and performance when optimizing the sensor network for multiple-occupancy smart homes; iii) whether the malicious purposes such as user re-identification in human mobility modelling could be mitigated by adversarial learning; iv) whether the fairness implications of mobility models and whether privacy-preserving techniques perform equally for different groups of users. To answer these research questions, I develop different architectures to model human activity and mobility. I first clarify the temporal-context dynamics in human activity modelling and achieve better prediction accuracy by appropriately using the temporal information. I then design a framework MoSen to simulate the interaction dynamics among residents and intelligent environments and generate an effective sensor network strategy. To relieve users' privacy concerns, I design Mo-PAE and show that the privacy of mobility traces attains decent protection at the marginal utility cost. Last but not least, I investigate the relations between fairness and privacy and conclude that while the privacy-aware model guarantees group fairness, it violates the individual fairness criteria.Open Acces
    • …
    corecore