15,531 research outputs found

    Geospatial data harmonization from regional level to european level: a usa case in forest fire data

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Geospatial data harmonization is becoming more and more important to increase interoperability of heterogeneous data derived from various sources in spatial data infrastructures. To address this harmonization issue we present the current status of data availability among different communities, languages, and administrative scales from regional to national and European levels. With a use case in forest data models in Europe, interoperability of burned area data derived from Europe and Valencia Community in Spain were tested and analyzed on the syntactic, schematic and semantic level. We suggest approaches for achieving a higher chance of data interoperability to guide forest domain experts in forest fire analysis. For testing syntactic interoperability, a common platform in the context of formats and web services was examined. We found that establishing OGC standard web services in a combination with GIS software applications that support various formats and web services can increase the chance of achieving syntactic interoperability between multiple geospatial data derived from different sources. For testing schematic and semantic interoperability, the ontology-based schema mapping approach was taken to transform a regional data model to a European data model on the conceptual level. The Feature Manipulation Engine enabled various types of data transformation from source to target attributes to achieve schematic interoperability. Ontological modelling in Protégé helped identify a common concept between the source and target data models, especially in cases where matching attributes were not found at the schematic level. Establishment of the domain ontology was explored to reach common ground between application ontologies and achieve a higher level of semantic interoperability

    An ontology-driven communication architecture for spontaneous interoperability in Home Automation systems

    Get PDF
    Current solutions to the interoperability problem in Home Automation systems are based on a priori agreements where protocols are standardized and later integrated through specific gateways. In this regards, spontaneous interoperability, or the ability to integrate new devices into the system with minimum planning in advance, is still considered a major challenge that requires new models of connectivity. In this paper we present an ontology-driven communication architecture whose main contribution is that it facilitates spontaneous interoperability at system model level by means of semantic integration. The architecture has been validated through a prototype and the main challenges for achieving complete spontaneous interoperability are also evaluated

    The Measurement of Quality of Semantic Standards: the Application of a Quality Model on the SETU standard for eGovernment

    Get PDF
    eGovernment interoperability should be dealt with using high-quality standards. A quality model for standards is presented based on knowledge from the software engineering domain. In the tradition of action research the model is used on the SETU standard, a standard that is mandatory in the public sector of the Netherlands in order to achieve eGovernment interoperability. This results in improvement suggestions for the SETU standards, just as improvement suggestions for the quality model have been identified. Most importantly it shows that a quality model can be used for several purposes, including selecting standards for eGovernment interoperability

    Semantic Gateway as a Service architecture for IoT Interoperability

    Get PDF
    The Internet of Things (IoT) is set to occupy a substantial component of future Internet. The IoT connects sensors and devices that record physical observations to applications and services of the Internet. As a successor to technologies such as RFID and Wireless Sensor Networks (WSN), the IoT has stumbled into vertical silos of proprietary systems, providing little or no interoperability with similar systems. As the IoT represents future state of the Internet, an intelligent and scalable architecture is required to provide connectivity between these silos, enabling discovery of physical sensors and interpretation of messages between things. This paper proposes a gateway and Semantic Web enabled IoT architecture to provide interoperability between systems using established communication and data standards. The Semantic Gateway as Service (SGS) allows translation between messaging protocols such as XMPP, CoAP and MQTT via a multi-protocol proxy architecture. Utilization of broadly accepted specifications such as W3C's Semantic Sensor Network (SSN) ontology for semantic annotations of sensor data provide semantic interoperability between messages and support semantic reasoning to obtain higher-level actionable knowledge from low-level sensor data.Comment: 16 page

    Quality model for semantic IS standards

    Get PDF
    Semantic IS (Information Systems) standards are essential for achieving\ud interoperability between organizations. However a recent survey suggests that\ud not the full benefits of standards are achieved, due to the quality issues. This\ud paper presents a quality model for semantic IS standards, that should support\ud standards development organizations in assessing the quality of their\ud standards. Although intended for semantic IS standards the potential use of\ud this quality model is much broader and might be applicable to all kind of\ud standards

    A Semantic-Agent Framework for PaaS Interoperability

    Get PDF
    Suchismita Hoare, Na Helian, and Nathan Baddoo, 'A Semantic-Agent Framework for PaaS Interoperability', in Proceedings of the The IEEE International Conference on Cloud and Big Data Computing, Toulouse, France, 18-21, July 2016. DOI: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0126 © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cloud Platform as a Service (PaaS) is poised for a wider adoption by its relevant stakeholders, especially Cloud application developers. Despite this, the service model is still plagued with several adoption inhibitors, one of which is lack of interoperability between proprietary application infrastructure services of public PaaS solutions. Although there is some progress in addressing the general PaaS interoperability issue through various devised solutions focused primarily on API compatibility and platform-agnostic application design models, interoperability specific to differentiated services provided by the existing public PaaS providers and the resultant disparity owing to the offered services’ semantics has not been addressed effectively, yet. The literature indicates that this dimension of PaaS interoperability is awaiting evolution in the state-of-the-art. This paper proposes the initial system design of a PaaS interoperability (IntPaaS) framework to be developed through the integration of semantic and agent technologies to enable transparent interoperability between incompatible PaaS services. This will involve uniform description through semantic annotation of PaaS provider services utilizing the OWL-S ontology, creating a knowledgebase that enables software agents to automatically search for suitable services to support Cloud-based Greenfield application development. The rest of the paper discusses the identified research problem along with the proposed solution to address the issue.Submitted Versio

    Is a Semantic Web Agent a Knowledge-Savvy Agent?

    No full text
    The issue of knowledge sharing has permeated the field of distributed AI and in particular, its successor, multiagent systems. Through the years, many research and engineering efforts have tackled the problem of encoding and sharing knowledge without the need for a single, centralized knowledge base. However, the emergence of modern computing paradigms such as distributed, open systems have highlighted the importance of sharing distributed and heterogeneous knowledge at a larger scale—possibly at the scale of the Internet. The very characteristics that define the Semantic Web—that is, dynamic, distributed, incomplete, and uncertain knowledge—suggest the need for autonomy in distributed software systems. Semantic Web research promises more than mere management of ontologies and data through the definition of machine-understandable languages. The openness and decentralization introduced by multiagent systems and service-oriented architectures give rise to new knowledge management models, for which we can’t make a priori assumptions about the type of interaction an agent or a service may be engaged in, and likewise about the message protocols and vocabulary used. We therefore discuss the problem of knowledge management for open multi-agent systems, and highlight a number of challenges relating to the exchange and evolution of knowledge in open environments, which pertinent to both the Semantic Web and Multi Agent System communities alike
    • 

    corecore