10 research outputs found

    Host and Network Optimizations for Performance Enhancement and Energy Efficiency in Data Center Networks

    Get PDF
    Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows

    Scheduling and reconfiguration of interconnection network switches

    Get PDF
    Interconnection networks are important parts of modern computing systems, facilitating communication between a system\u27s components. Switches connecting various nodes of an interconnection network serve to move data in the network. The switch\u27s delay and throughput impact the overall performance of the network and thus the system. Scheduling efficient movement of data through a switch and configuring the switch to realize a schedule are the main themes of this research. We consider various interconnection network switches including (i) crossbar-based switches, (ii) circuit-switched tree switches, and (iii) fat-tree switches. For crossbar-based input-queued switches, a recent result established that logarithmic packet delay is possible. However, this result assumes that packet transmission time through the switch is no less than schedule-generation time. We prove that without this assumption (as is the case in practice) packet delay becomes linear. We also report results of simulations that bear out our result for practical switch sizes and indicate that a fast scheduling algorithm reduces not only packet delay but also buffer size. We also propose a fast mesh-of-trees based distributed switch scheduling (maximal-matching based) algorithm that has polylog complexity. A circuit-switched tree (CST) can serve as an interconnect structure for various computing architectures and models such as the self-reconfigurable gate array and the reconfigurable mesh. A CST is a tree structure with source and destination processing elements as leaves and switches as internal nodes. We design several scheduling and configuration algorithms that distributedly partition a given set of communications into non-conflicting subsets and then establish switch settings and paths on the CST corresponding to the communications. A fat-tree is another widely used interconnection structure in many of today\u27s high-performance clusters. We embed a reconfigurable mesh inside a fat-tree switch to generate efficient connections. We present an R-Mesh-based algorithm for a fat-tree switch that creates buses connecting input and output ports corresponding to various communications using that switch

    Cross-Layer Design for Energy Efficiency on Data Center Network

    Get PDF
    Energy efficient infrastructures or green IT (Information Technology) has recently become a hot button issue for most corporations as they strive to eliminate every inefficiency from their enterprise IT systems and save capital and operational costs. Vendors of IT equipment now compete on the power efficiency of their devices, and as a result, many of the new equipment models are indeed more energy efficient. Various studies have estimated the annual electricity consumed by networking devices in the U.S. in the range of 6 - 20 Terra Watt hours. Our research has the potential to make promising solutions solve those overuses of electricity. An energy-efficient data center network architecture which can lower the energy consumption is highly desirable. First of all, we propose a fair bandwidth allocation algorithm which adopts the max-min fairness principle to decrease power consumption on packet switch fabric interconnects. Specifically, we include power aware computing factor as high power dissipation in switches which is fast turning into a key problem, owing to increasing line speeds and decreasing chip sizes. This efficient algorithm could not only reduce the convergence iterations but also lower processing power utilization on switch fabric interconnects. Secondly, we study the deployment strategy of multicast switches in hybrid mode in energy-aware data center network: a case of famous Fat-tree topology. The objective is to find the best location to deploy multicast switch not only to achieve optimal bandwidth utilization but also minimize power consumption. We show that it is possible to easily achieve nearly 50% of energy consumption after applying our proposed algorithm. Finally, although there exists a number of energy optimization solutions for DCNs, they consider only either the hosts or network, but not both. We propose a joint optimization scheme that simultaneously optimizes virtual machine (VM) placement and network flow routing to maximize energy savings. The simulation results fully demonstrate that our design outperforms existing host- or network-only optimization solutions, and well approximates the ideal but NP-complete linear program. To sum up, this study could be crucial for guiding future eco-friendly data center network that deploy our algorithm on four major layers (with reference to OSI seven layers) which are physical, data link, network and application layer to benefit power consumption in green data center

    Multistage Packet-Switching Fabrics for Data Center Networks

    Get PDF
    Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume. A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery. For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity. Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals. The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ) NoC fabric. The design merges assets of the output queuing, and NoCs to provide high throughput, and smooth latency variations. An approximate analytical model of the switch performance is also proposed. To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC (MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure

    Multistage Packet-Switching Fabrics for Data Center Networks

    Get PDF
    Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume. A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery. For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity. Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals. The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ) NoC fabric. The design merges assets of the output queuing, and NoCs to provide high throughput, and smooth latency variations. An approximate analytical model of the switch performance is also proposed. To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC (MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure

    Efficient Q. S support for higt-performance interconnects

    Get PDF
    Las redes de interconexión son un componente clave en un gran número de sistemas. Los mecanismos de calidad de servicio (qos) son responsables de asegurar que se alcanza un cierto rendimiento en la red. Las soluciones tradicionales para ofrecer qos en redes de interconexión de altas prestaciones normalmente se basan en arquitecturas complejas. El principal objetivo de esta tesis es investigar si podemos ofrecer mecanismos eficientes de qos. Nuestro propósito es alcanzar un soporte completo de qos con el mínimo de recursos. Para ello, se identifican redundancias en los mecanismos propuestos de qos y son eliminados sin afectar al rendimiento. Esta tesis consta de tres partes. En la primera comenzamos con las propuestas tradicionales de qos a nivel de clase de tráfico. En la segunda parte, proponemos como adaptar los mecanismos de qos basados en deadlines para redes de interconexión de altas prestaciones. Por último, también investigamos la interacción de los mecanismos de qos con el control de congestión

    Journal of Telecommunications and Information Technology, 2006, nr 3

    Get PDF
    kwartalni

    Journal of Telecommunications and Information Technology, 2004, nr 4

    Get PDF
    kwartalni

    Packet switch architecture for efficient unicast and multicast traffic switching

    Get PDF
    У дисертацији је предложена једноставна архитектура свича као и алгоритми за ефикасно распоређивање и комутацију уникаст и мултикаст саобраћаја, што је од великог значаја за савремене телекомуникационе мреже у којима количина саобраћаја константно расте. Први дио доприноса ове дисертације чини приједлог рјешења свича за ефикасно управљање уникаст саобраћајем. Ово рјешење је развијено комбинујући најбоље особине постојећих рјешења, при том избјегавајући одређене њихове недостатке. Циљ је да се омогући што брже прослијеђивање пакета уз прихватљив ниво хардверске комплексности. Свич који је развијен у овој дисертацији представља комбинацију свичева са баферима на улазу и свичева који користе Биркхоф-фон Нојман принцип детерминистичког конфигурисања комутационог модула па се не захтијева прорачун конфигурација комутатора. При томе, за разлику од већине рјешења која користе Биркхоф-фон Нојман принцип конфигурисања, у предложеном рјешењу могуће је користити само један физички комутациони модул који би обављао функције оба логичка комутациона модула. Да би се гарантовало да није дошло до поремећаја редослиједа пакета, предложен је и једноставан алгоритам за одабир пакета за слање. Такође, дат је и приједлог унапријеђења подршке за фер сервис првобитно предложеног рјешења за комутацију уникаст саобраћаја. У другом дијелу дисертације, пажња је посвећена унапријеђењу предложеног рјешења за ефикасно управљање и мултикаст саобраћајем. Потреба за овим се јавила као посљедица развоја нових сервиса (нпр. IPTV, онлајн игре итд.) који генеришу такав тип саобраћаја. Како је удио мултикаст саобраћаја у мрежи постао незанемарљив, перформансе свичева који су развијени примарно за уникаст саобраћај значајно опадају. Рјешење које је предложено у првом дијелу дисертације је унапријеђено додавањем модула који служи за управљање мултикаст саобраћајем. Овдје је идеја да се оптерећење са улазног порта који прима мултикаст пакете распореди на више портова који треба да приме те пакете. Овако је на релативно једноставан начин омогућено ефикасно управљање мултикаст саобраћајем. У оквиру дисертације су урађене софтверске симулације које су показале да ова рјешења постижу врло добре перформансе у односу на постојећа. Такође, урађена је и хардверска имплементација предложеног основног уникаст рјешења која је показала релативно скромне захтјеве у погледу хардверских ресурса.The dissertation proposes a simple switch architecture as well as algorithms for efficient scheduling and switching of unicast and multicast traffic, which is of great importance for modern telecommunication networks because their traffic load is constantly and rapidly increasing. The first part of the dissertation’s contributions comprises a proposed switch which efficiently manages unicast traffic. The proposed switch is developed by using the best characteristics of the existing solutions while avoiding some of their drawbacks. The aim is to enable fast packet forwarding while achieving an acceptable level of hardware complexity. The proposed solution combines architecture with buffers at input ports and Birkhoff-von Neumann architecture based on deterministic switch module configurations. Hence, calculation of switch module configurations is not needed. Also, folded architecture is possible, which means that only one physical switching module is used for both switching stages of Birkhoff-von Neumann architecture. A simple algorithm for packet scheduling has been developed in order to avoid packet out-of-sequence problems. Finally, fair service support improvement is introduced for the originally proposed switch solution. The second part of the dissertation is devoted to the enhancement of the proposed unicast switch for efficient management of multicast traffic. The need for multicast support has emerged as a consequence of the development and introduction of new services (such as IPTV, online gaming, etc.) that generate multicast traffic. As the amount of multicast traffic is not negligible anymore, the performance of packet switches that were primarily developed for the unicast traffic is significantly degraded. The solution proposed in the first part of the diseration is enhanced with the module used for multicast traffic management. Here, the idea is that the multicast load at some input port is distributed over ports that are also destination for the multicast packets. This approach enables relatively simple but efficient management of multicast traffic. In this dissertation, software simulations were conducted, which confirmed that proposed solutions achieve very good performances compared to existing solutons. Furthermore, hardware implementation of the proposed basic unicast switch solution shows modest requirements in terms of needed hardware resources
    corecore