2,619 research outputs found

    Secure Distributed Dynamic State Estimation in Wide-Area Smart Grids

    Full text link
    Smart grid is a large complex network with a myriad of vulnerabilities, usually operated in adversarial settings and regulated based on estimated system states. In this study, we propose a novel highly secure distributed dynamic state estimation mechanism for wide-area (multi-area) smart grids, composed of geographically separated subregions, each supervised by a local control center. We firstly propose a distributed state estimator assuming regular system operation, that achieves near-optimal performance based on the local Kalman filters and with the exchange of necessary information between local centers. To enhance the security, we further propose to (i) protect the network database and the network communication channels against attacks and data manipulations via a blockchain (BC)-based system design, where the BC operates on the peer-to-peer network of local centers, (ii) locally detect the measurement anomalies in real-time to eliminate their effects on the state estimation process, and (iii) detect misbehaving (hacked/faulty) local centers in real-time via a distributed trust management scheme over the network. We provide theoretical guarantees regarding the false alarm rates of the proposed detection schemes, where the false alarms can be easily controlled. Numerical studies illustrate that the proposed mechanism offers reliable state estimation under regular system operation, timely and accurate detection of anomalies, and good state recovery performance in case of anomalies

    The Impact of Stealthy Attacks on Smart Grid Performance: Tradeoffs and Implications

    Full text link
    The smart grid is envisioned to significantly enhance the efficiency of energy consumption, by utilizing two-way communication channels between consumers and operators. For example, operators can opportunistically leverage the delay tolerance of energy demands in order to balance the energy load over time, and hence, reduce the total operational cost. This opportunity, however, comes with security threats, as the grid becomes more vulnerable to cyber-attacks. In this paper, we study the impact of such malicious cyber-attacks on the energy efficiency of the grid in a simplified setup. More precisely, we consider a simple model where the energy demands of the smart grid consumers are intercepted and altered by an active attacker before they arrive at the operator, who is equipped with limited intrusion detection capabilities. We formulate the resulting optimization problems faced by the operator and the attacker and propose several scheduling and attack strategies for both parties. Interestingly, our results show that, as opposed to facilitating cost reduction in the smart grid, increasing the delay tolerance of the energy demands potentially allows the attacker to force increased costs on the system. This highlights the need for carefully constructed and robust intrusion detection mechanisms at the operator.Comment: Technical report - this work was accepted to IEEE Transactions on Control of Network Systems, 2016. arXiv admin note: substantial text overlap with arXiv:1209.176

    Modeling and Detecting False Data Injection Attacks against Railway Traction Power Systems

    Get PDF
    Modern urban railways extensively use computerized sensing and control technologies to achieve safe, reliable, and well-timed operations. However, the use of these technologies may provide a convenient leverage to cyber-attackers who have bypassed the air gaps and aim at causing safety incidents and service disruptions. In this paper, we study false data injection (FDI) attacks against railways' traction power systems (TPSes). Specifically, we analyze two types of FDI attacks on the train-borne voltage, current, and position sensor measurements - which we call efficiency attack and safety attack -- that (i) maximize the system's total power consumption and (ii) mislead trains' local voltages to exceed given safety-critical thresholds, respectively. To counteract, we develop a global attack detection (GAD) system that serializes a bad data detector and a novel secondary attack detector designed based on unique TPS characteristics. With intact position data of trains, our detection system can effectively detect the FDI attacks on trains' voltage and current measurements even if the attacker has full and accurate knowledge of the TPS, attack detection, and real-time system state. In particular, the GAD system features an adaptive mechanism that ensures low false positive and negative rates in detecting the attacks under noisy system measurements. Extensive simulations driven by realistic running profiles of trains verify that a TPS setup is vulnerable to the FDI attacks, but these attacks can be detected effectively by the proposed GAD while ensuring a low false positive rate.Comment: IEEE/IFIP DSN-2016 and ACM Trans. on Cyber-Physical System

    Bibliographical review on cyber attacks from a control oriented perspective

    Get PDF
    This paper presents a bibliographical review of definitions, classifications and applications concerning cyber attacks in networked control systems (NCSs) and cyber-physical systems (CPSs). This review tackles the topic from a control-oriented perspective, which is complementary to information or communication ones. After motivating the importance of developing new methods for attack detection and secure control, this review presents security objectives, attack modeling, and a characterization of considered attacks and threats presenting the detection mechanisms and remedial actions. In order to show the properties of each attack, as well as to provide some deeper insight into possible defense mechanisms, examples available in the literature are discussed. Finally, open research issues and paths are presented.Peer ReviewedPostprint (author's final draft

    Graphical Convolution Network Based Semi-Supervised Methods for Detecting PMU Data Manipulation Attacks

    Get PDF
    With the integration of information and communications technologies (ICTs) into the power grid, electricity infrastructures are gradually transformed towards smart grid and power systems become more open to and accessible from outside networks. With ubiquitous sensors, computers and communication networks, modern power systems have become complicated cyber-physical systems. The cyber security issues and the impact of potential attacks on the smart grid have become an important issue. Among these attacks, false data injection attack (FDIA) becomes a growing concern because of its varied types and impacts. Several detection algorithms have been developed in the last few years, which were model-based, trajectory prediction-based or learning-based methods. Phasor measurement units (PMUs) and supervisory control and data acquisition (SCADA) system work together to monitor the power system operation. The unsecured devices could offer opportunities to adversaries to compromise the system. In the literature review part of this thesis, the main methods are compared considering computing accuracy and complexity. Most work about PMUs ignored the reality that the number of PMUs installed in a power system is limited to realize observability because of high installing cost. Therefore, based on observable truth of PMU and the topology structure of power system, the graph convolution network (GCN) is proposed in this thesis. The main idea is using selected features to define violated PMU, and GCN is used to classify susceptible violated nodes and normal nodes. The basic detection method is introduced at first. And then the calculation process of neural network and Fourier transform are described with more details about graph convolution network. Later, the proposed detection mechanism and algorithm are introduced. Finally, the simulation results are given and analyzed
    • …
    corecore