1,964 research outputs found

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Reconfigurable Intelligent Computational Surfaces: When Wave Propagation Control Meets Computing

    Full text link
    The envisioned sixth-generation (6G) of wireless networks will involve an intelligent integration of communications and computing, thereby meeting the urgent demands of diverse applications. To realize the concept of the smart radio environment, reconfigurable intelligent surfaces (RISs) are a promising technology for offering programmable propagation of impinging electromagnetic signals via external control. However, the purely reflective nature of conventional RISs induces significant challenges in supporting computation-based applications, e.g., wave-based calculation and signal processing. To fulfil future communication and computing requirements, new materials are needed to complement the existing technologies of metasurfaces, enabling further diversification of electronics and their applications. In this event, we introduce the concept of reconfigurable intelligent computational surface (RICS), which is composed of two reconfigurable multifunctional layers: the `reconfigurable beamforming layer' which is responsible for tunable signal reflection, absorption, and refraction, and the `intelligence computation layer' that concentrates on metamaterials-based computing. By exploring the recent trends on computational metamaterials, RICSs have the potential to make joint communication and computation a reality. We further demonstrate two typical applications of RICSs for performing wireless spectrum sensing and secrecy signal processing. Future research challenges arising from the design and operation of RICSs are finally highlighted

    Performance studies of 3D-Hyper-FleX-LION for HPC applications

    Get PDF
    This paper studies the performance of 3D-Hyper-FleX-LION for HPC systems. The simulation results obtained for different HPC applications (i.e. Fill Boundary, Crystal Router, MiniFE, and MiniDFT) show up to 2.8× improvements in throughput per watt when compared with a Fat-Tree with no oversubcription

    Silicon Photonic Flex-LIONS for Bandwidth-Reconfigurable Optical Interconnects

    Get PDF
    This paper reports the first experimental demonstration of silicon photonic (SiPh) Flex-LIONS, a bandwidth-reconfigurable SiPh switching fabric based on wavelength routing in arrayed waveguide grating routers (AWGRs) and space switching. Compared with the state-of-the-art bandwidth-reconfigurable switching fabrics, Flex-LIONS architecture exhibits 21× less number of switching elements and 2.9× lower on-chip loss for 64 ports, which indicates significant improvements in scalability and energy efficiency. System experimental results carried out with an 8-port SiPh Flex-LIONS prototype demonstrate error-free one-to-eight multicast interconnection at 25 Gb/s and bandwidth reconfiguration from 25 Gb/s to 100 Gb/s between selected input and output ports. Besides, benchmarking simulation results show that Flex-LIONS can provide a 1.33× reduction in packet latency and >1.5× improvements in energy efficiency when replacing the core layer switches of Fat-Tree topologies with Flex-LIONS. Finally, we discuss the possibility of scaling Flex-LIONS up to N = 1024 ports (N = M × W) by arranging M^2 W-port Flex-LIONS in a Thin-CLOS architecture using W wavelengths
    • …
    corecore