12 research outputs found

    Multi-Channel Deficit Round-Robin Scheduling for Hybrid TDM/WDM Optical Networks

    Get PDF
    In this paper we propose and investigate the performance of a multi-channel scheduling algorithm based on the well-known deficit round-robin (DRR), which we call multi-channel DRR (MCDRR). We extend the original DRR to the case of multiple channels with tunable transmitters and fixed receivers to provide efficient fair queueing in hybrid time division multiplexing (TDM)/wavelength division multiplexing (WDM) optical networks. We take into account the availability of channels and tunable transmitters in extending the DRR and allow the overlap of `rounds' in scheduling to efficiently utilize channels and tunable transmitters. Simulation results show that the proposed MCDRR can provide nearly perfect fairness with ill-behaved flows for different sets of conditions for inter-frame times and frame sizes in hybrid TDM/WDM optical networks with tunable transmitters and fixed receivers

    Next Generation Optical Access Networks

    Full text link

    Next-Generation Optical Access Networks

    Full text link

    New dynamic bandwidth allocation algorithm analysis: DDSPON for ethernet passive optical networks

    Get PDF
    This project aims to present the state of the art in Dynamic Bandwidth Allocation (DBA) solutions, as well as the study and evaluation of one proposal of DBA algorithm: the Distributed Dynamic Scheduling for EPON (DDSPON), which is the UPC contribution to the research in scheduling algorithms for EPON

    Multichannel optical access networks : design and resource management

    Get PDF
    At present there is a strong worldwide push towards bringing fiber closer to individual homes and businesses. The next evolutionary step is the cost-effective all-optical integration of fiber-based access and metro networks. STARGATE [1] is an all-optical access-metro architecture which does not rely on costly active devices, e.g., Optical Cross-Connects (OXCs) or Fixed Wavelength Converters (FWCs), and allow low-cost PON technologies to follow low-cost Ethernet technologies from EPON access into metro networks, resulting in significantly reduced cost and complexity. It makes use of an overlay island of transparency with optical bypassing capabilities. In this thesis we first propose Optical Network Unit (ONU) architectures, and discuss several technical challenges, which allow STARGATE EPONs (SG-EPONs) to evolve in a pay-as-you-grow manner while providing backward compatibility with legacy infrastructure and protecting previous investment. Second, and considering all the hardware constraints, we present the corresponding dynamic bandwidth allocation algorithm for effective resource management in these networks and investigate their performances (delay, throughput) through simulation experiments. We further investigate the problem of transmission grant scheduling in multichannel optical access networks using a scheduling theoretic approach. We show that the problem can be modeled as an Open Shop and we formulate the joint scheduling and wavelength assignment problem as a Mixed Integer Linear Program (MJLP) whose objective is to reduce the length of a scheduling period. Since the problem is known to be NP-hard, we introduce a Tabu Search based heuristic for solving the joint problem. Different other heuristics are also considered and their performances are compared with those of Tabu and MILP. Results indicate that by appropriately scheduling transmission grants and assigning wavelengths, substantial and consistent improvements may be obtained in the network performance. For example, Tabu shows a reduction of up to 29% in the schedule length with substantial reduction in channel idle gaps yielding to both higher channel utilization and lower queuing delays. Additionally, when the number of channels in the network is not small, the benefits of performing appropriate wavelength assignment, together with transmission scheduling, are observed and discussed. We further perform a packet-level simulation on the considered network to study the benefits of efficient grant scheduling; significant improvements are shown both in terms of system utilization and packet queuing delays

    Converged wireline and wireless signal distribution in optical fiber access networks

    Get PDF

    Optical multicarrier sources for spectrally efficient optical networks

    Get PDF
    During the last 30 years the capacity of commercial optical systems exceeded the network traffic requirements, mainly due to the extraordinary scalability of wavelength division multiplexing technology that has been successfully used to expand capacity in optical systems and meet increasing bandwidth requirements since the early 1990’s. Nevertheless, the rapid growth of network traffic inverted this situation and current trends show faster growing network traffic than system capacity. To enable further and faster growth of optical communication network capacity, several breakthroughs occurred during the last decade. First, optical coherent communications, which were the subject of intensive research in the 1980’s, were revived. This triggered the employment of advanced modulation formats. Afterwards, with the introduction of orthogonal frequency division multiplexing (OFDM) and Nyquist WDM modulation techniques in optical communication systems, very efficient utilisation of the available spectral bandwidth was enabled. In such systems the spectral guard bands between neighbouring channels are minimised, at the expense of stricter requirements on the performance of optical sources, especially the frequency (or wavelength) stability. Attractive solutions to address the frequency stability issues are optical multicarrier sources which simultaneously generate multiple phase correlated optical carriers that ensure that the frequency difference between the carriers is fixed. In this thesis, a number of optical multicarrier sources are presented and analysed, with special focus being on semiconductor mode-locked lasers and gain-switched comb sources. High capacity and spectrally efficient optical systems for short and medium reach applications (from 3 km up to 300 km), based on optical frequency combs as optical sources, advanced modulation formats (m-QAM) and modulation techniques (OFDM and Nyquist WDM) have been proposed and presented. Also, certain optoelectronic devices (i.e. semiconductor optical amplifier) and techniques (feed-forward heterodyne linewidth reduction scheme) have been utilised to enable the desired system performance
    corecore