2,172 research outputs found

    Improving the Spectral Efficiency of Nonlinear Satellite Systems through Time-Frequency Packing and Advanced Processing

    Full text link
    We consider realistic satellite communications systems for broadband and broadcasting applications, based on frequency-division-multiplexed linear modulations, where spectral efficiency is one of the main figures of merit. For these systems, we investigate their ultimate performance limits by using a framework to compute the spectral efficiency when suboptimal receivers are adopted and evaluating the performance improvements that can be obtained through the adoption of the time-frequency packing technique. Our analysis reveals that introducing controlled interference can significantly increase the efficiency of these systems. Moreover, if a receiver which is able to account for the interference and the nonlinear impairments is adopted, rather than a classical predistorter at the transmitter coupled with a simpler receiver, the benefits in terms of spectral efficiency can be even larger. Finally, we consider practical coded schemes and show the potential advantages of the optimized signaling formats when combined with iterative detection/decoding.Comment: 8 pages, 8 figure

    Time-Frequency Packing for High Capacity Coherent Optical Links

    Full text link
    We consider realistic long-haul optical links, with linear and nonlinear impairments, and investigate the application of time-frequency packing with low-order constellations as a possible solution to increase the spectral efficiency. A detailed comparison with available techniques from the literature will be also performed. We will see that this technique represents a feasible solution to overcome the relevant theoretical and technological issues related to this spectral efficiency increase and could be more effective than the simple adoption of high-order modulation formats.Comment: 10 pages, 9 figures. arXiv admin note: text overlap with arXiv:1406.5685 by other author

    Spectral Efficiency Optimization in Flexi-Grid Long-Haul Optical Systems

    Full text link
    Flexible grid optical networks allow a better exploitation of fiber capacity, by enabling a denser frequency allocation. A tighter channel spacing, however, requires narrower filters, which increase linear intersymbol interference (ISI), and may dramatically reduce system reach. Commercial coherent receivers are based on symbol by symbol detectors, which are quite sensitive to ISI. In this context, Nyquist spacing is considered as the ultimate limit to wavelength-division multiplexing (WDM) packing. In this paper, we show that by introducing a limited-complexity trellis processing at the receiver, either the reach of Nyquist WDM flexi-grid networks can be significantly extended, or a denser-than-Nyquist channel packing (i.e., a higher spectral efficiency (SE)) is possible at equal reach. By adopting well-known information-theoretic techniques, we design a limited-complexity trellis processing and quantify its SE gain in flexi-grid architectures where wavelength selective switches over a frequency grid of 12.5GHz are employed.Comment: 7 pages, 9 figure

    Advanced transceivers for spectrally-efficient communications

    Get PDF
    In this thesis, we will consider techniques to improve the spectral efficiency of digital communication systems, operating on the whole transceiver scheme. First, we will focus on receiver schemes having detection algorithms with a complexity constraint. We will optimize the parameters of the reduced detector with the aim of maximizing the achievable information rate. Namely, we will adopt the channel shortening technique. Then, we will focus on a technique that is getting very popular in the last years (although presented for the first time in 1975): faster-than-Nyquist signaling, and its extension which is time packing. Time packing is a very simple technique that consists in introducing intersymbol interference on purpose with the aim of increasing the spectral efficiency of finite order constellations. Finally, in the last chapters we will combine all the presented techniques, and we will consider their application to satellite channels.Comment: PhD Thesi

    Non-linearized amplifier and advanced mitigation techniques: DVB-S2X spectral efficiency improvement

    Get PDF
    The latest standardization DVB-S2X increases the achievable spectral efficiency of the satellite communications by around 15% in AWGN channel. In order to benefit from those improvements, the strong non-linear distortions introduced by the payload have to be overcome, mostly taking high back-off on the amplifier operation point. Nowadays, on- board amplifiers are linearized before being deployed, allowing low-complexity transmitters and receivers at the detriment of the payload's cost and reduced energy efficiency. In this paper, various techniques are investigated for the purpose of spectral efficiency improvement while releasing the amplifier linearization constraint. Iterative pre-distortion at the transmitter, turbo- equalization at the receiver and appropriate waveforms for transmission through non-linearized payload appear as strong candidates considering the results of this study

    Replacing the Soft FEC Limit Paradigm in the Design of Optical Communication Systems

    Get PDF
    The FEC limit paradigm is the prevalent practice for designing optical communication systems to attain a certain bit-error rate (BER) without forward error correction (FEC). This practice assumes that there is an FEC code that will reduce the BER after decoding to the desired level. In this paper, we challenge this practice and show that the concept of a channel-independent FEC limit is invalid for soft-decision bit-wise decoding. It is shown that for low code rates and high order modulation formats, the use of the soft FEC limit paradigm can underestimate the spectral efficiencies by up to 20%. A better predictor for the BER after decoding is the generalized mutual information, which is shown to give consistent post-FEC BER predictions across different channel conditions and modulation formats. Extensive optical full-field simulations and experiments are carried out in both the linear and nonlinear transmission regimes to confirm the theoretical analysis

    Low Complexity Noncoherent Iterative Detector for Continuous Phase Modulation Systems

    Get PDF
    This paper focuses on the noncoherent iterative detection of continuous phase modulation. A class of simplified receivers based on Principal-Component-Analysis (PCA) and Exponential-Window (EW) is developed. The proposed receiver is evaluated in terms of minimum achievable Euclidean distance, simulated bit error rate and achievable capacity. The performance of the proposed receiver is discussed in the context of mismatched receiver and the equivalent Euclidean distance is derived. Analysis and numerical results reveal that the proposed algorithm can approach the coherent performance and outperforms existing algorithm in terms of complexity and performance. It is shown that the proposed receiver can significantly reduce the detection complexity while the performance is comparable with existing algorithms

    Single-Carrier Modulation versus OFDM for Millimeter-Wave Wireless MIMO

    Full text link
    This paper presents results on the achievable spectral efficiency and on the energy efficiency for a wireless multiple-input-multiple-output (MIMO) link operating at millimeter wave frequencies (mmWave) in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e., a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver; these two schemes are compared with a conventional MIMO-OFDM transceiver structure. Our analysis jointly takes into account the peculiar characteristics of MIMO channels at mmWave frequencies, the use of hybrid (analog-digital) pre-coding and post-coding beamformers, the finite cardinality of the modulation structure, and the non-linear behavior of the transmitter power amplifiers. Our results show that the best performance is achieved by single-carrier modulation with time-domain equalization, which exhibits the smallest loss due to the non-linear distortion, and whose performance can be further improved by using advanced equalization schemes. Results also confirm that performance gets severely degraded when the link length exceeds 90-100 meters and the transmit power falls below 0 dBW.Comment: accepted for publication on IEEE Transactions on Communication

    Faster-than-Nyquist signaling for next generation communication architectures

    Get PDF
    We discuss a few promising applications of the faster-than-Nyquist (FTN) signaling technique. Although proposed in the mid 70s, thanks to recent extensions this technique is taking on a new lease of life. In particular, we will discuss its applications to satellite systems for broadcasting transmissions, optical long-haul transmissions, and next-generation cellular systems, possibly equipped with a large scale antenna system (LSAS) at the base stations (BSs). Moreover, based on measurements with a 128 element antenna array, we analyze the spectral efficiency that can be achieved with simple receiver solutions in single carrier LSAS systems
    • …
    corecore