1,739 research outputs found

    Cell-Free Massive MIMO versus Small Cells

    Get PDF
    A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs)which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max-min power control algorithms. Max-min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly 5-fold improvement in 95%-likely per-user throughput over the small-cell scheme, and 10-fold improvement when shadow fading is correlated.Comment: EEE Transactions on Wireless Communications, accepted for publicatio

    Linear Precoding with Low-Resolution DACs for Massive MU-MIMO-OFDM Downlink

    Full text link
    We consider the downlink of a massive multiuser (MU) multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with low-resolution digital-to-analog converters (DACs). In contrast to most existing results, we assume that the system operates over a frequency-selective wideband channel and uses orthogonal frequency division multiplexing (OFDM) to simplify equalization at the user equipments (UEs). Furthermore, we consider the practically relevant case of oversampling DACs. We theoretically analyze the uncoded bit error rate (BER) performance with linear precoders (e.g., zero forcing) and quadrature phase-shift keying using Bussgang's theorem. We also develop a lower bound on the information-theoretic sum-rate throughput achievable with Gaussian inputs, which can be evaluated in closed form for the case of 1-bit DACs. For the case of multi-bit DACs, we derive approximate, yet accurate, expressions for the distortion caused by low-precision DACs, which can be used to establish lower bounds on the corresponding sum-rate throughput. Our results demonstrate that, for a massive MU-MIMO-OFDM system with a 128-antenna BS serving 16 UEs, only 3--4 DAC bits are required to achieve an uncoded BER of 10^-4 with a negligible performance loss compared to the infinite-resolution case at the cost of additional out-of-band emissions. Furthermore, our results highlight the importance of taking into account the inherent spatial and temporal correlations caused by low-precision DACs

    Boosting Fronthaul Capacity: Global Optimization of Power Sharing for Centralized Radio Access Network

    Full text link
    The limited fronthaul capacity imposes a challenge on the uplink of centralized radio access network (C-RAN). We propose to boost the fronthaul capacity of massive multiple-input multiple-output (MIMO) aided C-RAN by globally optimizing the power sharing between channel estimation and data transmission both for the user devices (UDs) and the remote radio units (RRUs). Intuitively, allocating more power to the channel estimation will result in more accurate channel estimates, which increases the achievable throughput. However, increasing the power allocated to the pilot training will reduce the power assigned to data transmission, which reduces the achievable throughput. In order to optimize the powers allocated to the pilot training and to the data transmission of both the UDs and the RRUs, we assign an individual power sharing factor to each of them and derive an asymptotic closed-form expression of the signal-to-interference-plus-noise for the massive MIMO aided C-RAN consisting of both the UD-to-RRU links and the RRU-to-baseband unit (BBU) links. We then exploit the C-RAN architecture's central computing and control capability for jointly optimizing the UDs' power sharing factors and the RRUs' power sharing factors aiming for maximizing the fronthaul capacity. Our simulation results show that the fronthaul capacity is significantly boosted by the proposed global optimization of the power allocation between channel estimation and data transmission both for the UDs and for their host RRUs. As a specific example of 32 receive antennas (RAs) deployed by RRU and 128 RAs deployed by BBU, the sum-rate of 10 UDs achieved with the optimal power sharing factors improves 33\% compared with the one attained without optimizing power sharing factors
    • …
    corecore