31 research outputs found

    Multiuser Diversity for Secrecy Communications Using Opportunistic Jammer Selection -- Secure DoF and Jammer Scaling Law

    Full text link
    In this paper, we propose opportunistic jammer selection in a wireless security system for increasing the secure degrees of freedom (DoF) between a transmitter and a legitimate receiver (say, Alice and Bob). There is a jammer group consisting of SS jammers among which Bob selects KK jammers. The selected jammers transmit independent and identically distributed Gaussian signals to hinder the eavesdropper (Eve). Since the channels of Bob and Eve are independent, we can select the jammers whose jamming channels are aligned at Bob, but not at Eve. As a result, Eve cannot obtain any DoF unless it has more than KNjKN_j receive antennas, where NjN_j is the number of jammer's transmit antenna each, and hence KNjKN_j can be regarded as defensible dimensions against Eve. For the jamming signal alignment at Bob, we propose two opportunistic jammer selection schemes and find the scaling law of the required number of jammers for target secure DoF by a geometrical interpretation of the received signals.Comment: Accepted with minor revisions, IEEE Trans. on Signal Processin

    Wireless information and energy transfer in multi-cluster MIMO uplink networks through opportunistic interference alignment

    No full text
    In this paper, we consider a K-cluster (K >= 2) simultaneous wireless information and power transfer (SWIPT) network, where S nodes (S >= 2) are selected from N nodes within each cluster for the uplink information transmission (IT) and the remaining N - S idle nodes are dedicated to energy harvesting (EH). Based on the intra-cluster performance aware (ICPA) philosophy, a pair of opportunistic interference alignment (OIA) schemes, namely the coarse ICPA-OIA (C-ICPA-OIA) and the refined ICPA-OIA (R-ICPA-OIA), are proposed for balancing the sum rate performance achieved and the energy harvested. Specifically, the C-ICPA-OIA treats the overall signal strength within the reference signal subspace (RSS) as a coarse description of the node’s effective signal strength. By comparison, to take full advantage of zero-forcing (ZF) based reception, the R-ICPA-OIA considers the projected signal strength with respect to the orthonormal basis of RSS as a substantially refined description of the node’s effective signal strength. Furthermore, we analyzed the harvested power and the working time of the system. Extensive simulation results validate our theoretical analyses, demonstrating that our schemes outperform the existing OIA schemes

    Opportunistic communications in large uncoordinated networks

    Get PDF
    (English) The increase of wireless devices offering high data rate services limits the coexistence of wireless systems sharing the same resources in a given geographical area because of inter-system interference. Therefore, interference management plays a key role in permitting the coexistence of several heterogeneous communication services. However, classical interference management strategies require lateral information giving rise to the need for inter-system coordination and cooperation, which is not always practical. Opportunistic communications offer a potential solution to the problem of inter-system interference management. The basic principle of opportunistic communications is to efficiently and robustly exploit the resources available in a wireless network and adapt the transmitted signals to the state of the network to avoid inter-system interference. Therefore, opportunistic communications depend on inferring the available network resources that can be safely exploited without inducing interference in coexisting communication nodes. Once the available network resources are identified, the most prominent opportunistic communication techniques consist in designing scenario-adapted precoding/decoding strategies to exploit the so-called null space. Despite this, classical solutions in the literature suffer from two main drawbacks: the lack of robustness to detection errors and the need for intra-system cooperation. This thesis focuses on the design of a null space-based opportunistic communication scheme that addresses the drawbacks exhibited by existing methodologies under the assumption that opportunistic nodes do not cooperate. For this purpose, a generalized detection error model independent of the null-space identification mechanism is introduced that allows the design of solutions that exhibit minimal inter-system interference in the worst case. These solutions respond to a maximum signal-to-interference ratio (SIR) criterion, which is optimal under non-cooperative conditions. The proposed methodology allows the design of a family of orthonormal waveforms that perform a spreading of the modulated symbols within the detected null space, which is key to minimizing the induced interference density. The proposed solutions are invariant within the inferred null space, allowing the removal of the feedback link without giving up coherent waveform detection. In the absence of coordination, the waveform design relies solely on locally sensed network state information, inducing a mismatch between the null spaces identified by the transmitter and receiver that may worsen system performance. Although the proposed solution is robust to this mismatch, the design of enhanced receivers using active subspace detection schemes is also studied. When the total number of network resources increases arbitrarily, the proposed solutions tend to be linear combinations of complex exponentials, providing an interpretation in the frequency domain. This asymptotic behavior allows us to adapt the proposed solution to frequency-selective channels by means of a cyclic prefix and to study an efficient modulation similar to the time division multiplexing scheme but using circulant waveforms. Finally, the impact of the use of multiple antennas in opportunistic null space-based communications is studied. The performed analysis reveals that, in any case, the structure of the antenna clusters affects the opportunistic communication, since the proposed waveform mimics the behavior of a single-antenna transmitter. On the other hand, the number of sensors employed translates into an improvement in terms of SIR.(Català) El creixement incremental dels dispositius sense fils que requereixen serveis d'alta velocitat de dades limita la coexistència de sistemes sense fils que comparteixen els mateixos recursos en una àrea geogràfica donada a causa de la interferència entre sistemes. Conseqüentment, la gestió d'interferència juga un paper fonamental per a facilitar la coexistència de diversos serveis de comunicació heterogenis. No obstant això, les estratègies clàssiques de gestió d'interferència requereixen informació lateral originant la necessitat de coordinació i cooperació entre sistemes, que no sempre és pràctica. Les comunicacions oportunistes ofereixen una solució potencial al problema de la gestió de les interferències entre sistemes. El principi bàsic de les comunicacions oportunistes és explotar de manera eficient i robusta els recursos disponibles en una xarxa sense fils i adaptar els senyals transmesos a l'estat de la xarxa per evitar interferències entre sistemes. Per tant, les comunicacions oportunistes depenen de la inferència dels recursos de xarxa disponibles que poden ser explotats de manera segura sense induir interferència en els nodes de comunicació coexistents. Una vegada que s'han identificat els recursos de xarxa disponibles, les tècniques de comunicació oportunistes més prominents consisteixen en el disseny d'estratègies de precodificació/descodificació adaptades a l'escenari per explotar l'anomenat espai nul. Malgrat això, les solucions clàssiques en la literatura sofreixen dos inconvenients principals: la falta de robustesa als errors de detecció i la necessitat de cooperació intra-sistema. Aquesta tesi tracta el disseny d'un esquema de comunicació oportunista basat en l'espai nul que afronta els inconvenients exposats per les metodologies existents assumint que els nodes oportunistes no cooperen. Per a aquest propòsit, s'introdueix un model generalitzat d'error de detecció independent del mecanisme d'identificació de l'espai nul que permet el disseny de solucions que exhibeixen interferències mínimes entre sistemes en el cas pitjor. Aquestes solucions responen a un criteri de màxima relació de senyal a interferència (SIR), que és òptim en condicions de no cooperació. La metodologia proposada permet dissenyar una família de formes d'ona ortonormals que realitzen un spreading dels símbols modulats dins de l'espai nul detectat, que és clau per minimitzar la densitat d’interferència induïda. Les solucions proposades són invariants dins de l'espai nul inferit, permetent suprimir l'enllaç de retroalimentació i, tot i així, realitzar una detecció coherent de forma d'ona. Sota l’absència de coordinació, el disseny de la forma d'ona es basa únicament en la informació de l'estat de la xarxa detectada localment, induint un desajust entre els espais nuls identificats pel transmissor i receptor que pot empitjorar el rendiment del sistema. Tot i que la solució proposada és robusta a aquest desajust, també s'estudia el disseny de receptors millorats fent ús de tècniques de detecció de subespai actiu. Quan el nombre total de recursos de xarxa augmenta arbitràriament, les solucions proposades tendeixen a ser combinacions lineals d'exponencials complexes, proporcionant una interpretació en el domini freqüencial. Aquest comportament asimptòtic permet adaptar la solució proposada a entorns selectius en freqüència fent ús d'un prefix cíclic i estudiar una modulació eficient derivada de l'esquema de multiplexat per divisió de temps emprant formes d'ona circulant. Finalment, s’estudia l'impacte de l'ús de múltiples antenes en comunicacions oportunistes basades en l'espai nul. L'anàlisi realitzada permet concloure que, en cap cas, l'estructura de les agrupacions d'antenes tenen un impacte sobre la comunicació oportunista, ja que la forma d'ona proposada imita el comportament d'un transmissor mono-antena. D'altra banda, el nombre de sensors emprat es tradueix en una millora en termes de SIR.(Español) El incremento de los dispositivos inalámbricos que ofrecen servicios de alta velocidad de datos limita la coexistencia de sistemas inalámbricos que comparten los mismos recursos en un área geográfica dada a causa de la interferencia inter-sistema. Por tanto, la gestión de interferencia juega un papel fundamental para facilitar la coexistencia de varios servicios de comunicación heterogéneos. Sin embargo, las estrategias clásicas de gestión de interferencia requieren información lateral originando la necesidad de coordinación y cooperación entre sistemas, que no siempre es práctica. Las comunicaciones oportunistas ofrecen una solución potencial al problema de la gestión de las interferencias entre sistemas. El principio básico de las comunicaciones oportunistas es explotar de manera eficiente y robusta los recursos disponibles en una red inalámbricas y adaptar las señales transmitidas al estado de la red para evitar interferencias entre sistemas. Por lo tanto, las comunicaciones oportunistas dependen de la inferencia de los recursos de red disponibles que pueden ser explotados de manera segura sin inducir interferencia en los nodos de comunicación coexistentes. Una vez identificados los recursos disponibles, las técnicas de comunicación oportunistas más prominentes consisten en el diseño de estrategias de precodificación/descodificación adaptadas al escenario para explotar el llamado espacio nulo. A pesar de esto, las soluciones clásicas en la literatura sufren dos inconvenientes principales: la falta de robustez a los errores de detección y la necesidad de cooperación intra-sistema. Esta tesis propone diseñar un esquema de comunicación oportunista basado en el espacio nulo que afronta los inconvenientes expuestos por las metodologías existentes asumiendo que los nodos oportunistas no cooperan. Para este propósito, se introduce un modelo generalizado de error de detección independiente del mecanismo de identificación del espacio nulo que permite el diseño de soluciones que exhiben interferencias mínimas entre sistemas en el caso peor. Estas soluciones responden a un criterio de máxima relación de señal a interferencia (SIR), que es óptimo en condiciones de no cooperación. La metodología propuesta permite diseñar una familia de formas de onda ortonormales que realizan un spreading de los símbolos modulados dentro del espacio nulo detectado, que es clave para minimizar la densidad de interferencia inducida. Las soluciones propuestas son invariantes dentro del espacio nulo inferido, permitiendo suprimir el enlace de retroalimentación sin renunciar a la detección coherente de forma de onda. En ausencia de coordinación, el diseño de la forma de onda se basa únicamente en la información del estado de la red detectada localmente, induciendo un desajuste entre los espacios nulos identificados por el transmisor y receptor que puede empeorar el rendimiento del sistema. A pesar de que la solución propuesta es robusta a este desajuste, también se estudia el diseño de receptores mejorados usando técnicas de detección de subespacio activo. Cuando el número total de recursos de red aumenta arbitrariamente, las soluciones propuestas tienden a ser combinaciones lineales de exponenciales complejas, proporcionando una interpretación en el dominio frecuencial. Este comportamiento asintótico permite adaptar la solución propuesta a canales selectivos en frecuencia mediante un prefijo cíclico y estudiar una modulación eficiente derivada del esquema de multiplexado por división de tiempo empleando formas de onda circulante. Finalmente, se estudia el impacto del uso de múltiples antenas en comunicaciones oportunistas basadas en el espacio nulo. El análisis realizado revela que la estructura de las agrupaciones de antenas no afecta la comunicación oportunista, ya que la forma de onda propuesta imita el comportamiento de un transmisor mono-antena. Por otro lado, el número de sensores empleado se traduce en una mejora en términos de SIR.Postprint (published version

    Advanced interference management techniques for future wireless networks

    Get PDF
    In this thesis, we design advanced interference management techniques for future wireless networks under the availability of perfect and imperfect channel state information (CSI). We do so by considering a generalized imperfect CSI model where the variance of the channel estimation error depends on the signal-to-noise ratio (SNR). First, we analyze the performance of standard linear precoders, namely channel inversion (CI) and regularized CI (RCI), in downlink of cellular networks by deriving the received signal-to-interference-plus-noise ratio (SINR) of each user subject to both perfect and imperfect CSI. In this case, novel bounds on the asymptotic performance of linear precoders are derived, which determine howmuch accurate CSI should be to achieve a certain quality of service (QoS). By relying on the knowledge of error variance in advance, we propose an adaptive RCI technique to further improve the performance of standard RCI subject to CSI mismatch. We further consider transmit-power efficient design of wireless cellular networks. We propose two novel linear precoding techniques which can notably decrease the deployed power at transmit side in order to secure the same average output SINR at each user compared to standard linear precoders like CI and RCI. We also address a more sophisticated interference scenario, i.e., wireless interference networks, wherein each of the K transmitters communicates with its corresponding receiver while causing interference to the others. The most representative interference management technique in this case is interference alignment (IA). Unlike standard techniques like time division multiple access (TDMA) and frequency division multiple access (FDMA) where the achievable degrees of freedom (DoF) is one, with IA, the achievable DoF scales up with the number of users. Therefore, in this thesis, we quantify the asymptotic performance of IA under a generalized CSI mismatch model by deriving novel bounds on asymptotic mean loss in sum rate and the achievable DoF. We also propose novel least squares (LS) and minimum mean square error (MMSE) based IA techniques which are able to outperform standard IA schemes under perfect and imperfect CSI. Furthermore, we consider the implementation of IA in coordinated networks which enable us to decrease the number of deployed antennas in order to secure the same achievable DoF compared to standard IA techniques

    Interference mitigation using group decoding in multiantenna systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Cost-Effective Signal Processing Algorithms for Physical-Layer Security in Wireless Networks

    Get PDF
    Data privacy in traditional wireless communications is accomplished by cryptography techniques at the upper layers of the protocol stack. This thesis aims at contributing to the critical security issue residing in the physical-layer of wireless networks, namely, secrecy rate in various transmission environments. Physical-layer security opens the gate to the exploitation of channel characteristics to achieve data secure transmission. Precoding techniques, as a critical aspect in pre-processing signals prior to transmission has become an effective approach and recently drawn significant attention in the literature. In our research, novel non-linear precoders are designed focusing on the improvement of the physical-layer secrecy rate with consideration of computational complexity as well as the Bit Error Ratio (BER) performance. In the process of designing the precoder, strategies such as Lattice Reduction (LR) and Artificial Noise (AN) are employed to achieve certain design requirements. The deployment and allocation of resources such as relays to assist the transmission also have gained significant interest. In multiple-antenna relay networks, we examine various relay selection criteria with arbitrary knowledge of the channels to the users and the eavesdroppers. Furthermore, we provide novel effective relay selection criteria that can achieve a high secrecy rate performance. More importantly they do not require knowledge of the channels of the eavesdroppers and the interference. Combining the jamming technique with resource allocation of relay networks, we investigate an opportunistic relaying and jamming scheme for Multiple-Input Multiple-Output (MIMO) buffer-aided downlink relay networks. More specifically, a novel Relaying and Jamming Function Selection (RJFS) algorithm as well as a buffer-aided RJFS algorithm are developed along with their ability to achieve a higher secrecy rate. Relying on the proposed relay network, we detail the characteristics of the system, under various relay selection criteria, develop exhaustive search and greedy search-based algorithms, with or without inter-relay Interference Cancellation (IC)
    corecore