53 research outputs found

    Retrospective Interference Alignment

    Full text link
    We explore similarities and differences in recent works on blind interference alignment under different models such as staggered block fading model and the delayed CSIT model. In particular we explore the possibility of achieving interference alignment with delayed CSIT when the transmitters are distributed. Our main contribution is an interference alignment scheme, called retrospective interference alignment in this work, that is specialized to settings with distributed transmitters. With this scheme we show that the 2 user X channel with only delayed channel state information at the transmitters can achieve 8/7 DoF, while the interference channel with 3 users is able to achieve 9/8 DoF. We also consider another setting where delayed channel output feedback is available to transmitters. In this setting the X channel and the 3 user interference channel are shown to achieve 4/3 and 6/5 DoF, respectively

    A hybrid TIM-NOMA scheme for the SISO Broadcast Channel

    Get PDF
    Future mobile communication networks will require enhanced network efficiency and reduced system overhead due to their user density and high data rate demanding applications of the mobile devices. Research on Blind Interference Alignment (BIA) and Topological Interference Management (TIM) has shown that optimal Degrees of Freedom (DoF) can be achieved, in the absence of Channel State Information (CSI) at the transmitters, reducing the network's overhead. Moreover, the recently emerged Non-Orthogonal Multiple Access (NOMA) scheme suggests a different multiple access approach, compared to the current orthogonal methods employed in 4G networks, resulting in high capacity gains. Our contribution is a hybrid TIM-NOMA scheme in Single-Input-Single-Output (SISO) K-user cells, in which users are divided into T groups, and 1/T DoF is achieved for each user. By superimposing users in the power domain, we introduce a two-stage decoding process, managing 'inter-group' interference based on the TIM principles, and 'intra-group' interference based on Successful Interference Cancellation (SIC), as proposed by NOMA. We show that for high SNR values the hybrid scheme can improve the sum rate by at least 100% when compared to Time Division Multiple Access (TDMA).Comment: 6 pages, 6 figures, submitted to IEEE ICC'15 - IEEE SCAN Worksho
    • …
    corecore