277 research outputs found

    Sequential curing of thiol-acetoacetate-acrylate thermosets by latent Michael addition reactions

    Get PDF
    Thiol-acetoacetate-acrylate ternary dual-curing thermosets were prepared by a sequential process consisting of thiol-Michael addition to acrylates at room temperature followed by Michael addition of acetoacetates to acrylates at moderately elevated temperature. The curing sequence can be controlled with the help of the different acidities of the protons on thiol and acetoacetate groups, the favorable pKa of the base used as catalyst and the self-limiting character of Michael additions. The latency of the curing steps can be regulated by selection of the right catalysts, temperature and curing conditions. The properties of the intermediate and final materials can be tuned by changing the structure of the monomers and the contribution of both Michael addition reactions.Postprint (author's final draft

    Acetoacetate based thermosets prepared by dual-Michael addition reactions

    Get PDF
    A novel set of dual-curable multiacetoacetate-multiacrylate-divinyl sulfone ternary materials with versatile and manipulable properties are presented. In contrast to common dual-curing systems, the first stage polymer herein consists of a densely crosslinked, high Tg network as a result of base-catalyzed multiacetoacetate-divinyl sulfone Michael addition. A more flexible secondary network forms after base-catalyzed Michael addition of remaining multiacetoacetate to multiacrylate. Curing is truly sequential as the rates of the two Michael additions are significantly different. Curing kinetics were analyzed using differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). The materials at each curing stage were characterized using dynamic mechanical analysis (DMA) and SEM. Although some phase separation was observed in certain formulations, the incompatibilities were minimized when the molar percentage of the acetoacetate-divinyl sulfone polymer network was above 75%. Furthermore, the environmental scanning electron microscopy (ESEM) images of these materials show that the more flexible acetoacetate-acrylate phase is dispersed in the form of polymeric spheres within the rigid acetoacetate-divinyl sulfone matrix. This unique dual microstructure can potentially render these materials highly resilient in applications requiring densely crosslinked polymer architectures with enhanced toughnesPostprint (published version

    Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    Get PDF
    International audienc

    Synthesis of new Biginelli polycondensates: renewable materials with tunable high glass transition temperatures

    Get PDF
    The Biginelli reaction was applied as a simple one‐pot multicomponent polycondensation approach to efficiently synthesize a set of 15 new and fully renewable poly(3,4‐dihydropyrimidin‐2(1H)‐one)s. One of six bis‐acetoacetates or three bis‐acetoacetamides, terephthalic aldehyde and (methyl‐)urea were used as renewable starting materials in various combinations, hence significantly expanding the known set of monomers as well as polymer structures. The bis‐acetoacetates and bis‐acetoacetamides with different spacer lengths were synthesized in yields of up to 99% in a one‐step process. Thermal analysis of the obtained set of polymers revealed high glass transition temperatures (Tg_{g}) ranging from 160 to 308 °C. The Tg_{g} was tunable in small steps of 10 °C by simple variation of bis‐acetoacetate or bis‐acetoacetamide monomers as well as the choice of (methyl‐)urea. The poly(3,4‐dihydropyrimidin‐2(1H)‐one)s showed good thermal stability with T_{d5%} values well above the respective high Tg_{g} values

    Benzothiazole durch C-C-Spaltung von alpha-[(2-Nitrophenyl)thio]ketonen

    Get PDF
    Einwirkung von Ammoniak bzw. Natronlauge auf die -[(2-Nitrophenyl)thio]ketone 4, 11a-c und 16 fĂźhrt unter CC-Spaltung zu den Benzothiazol-N-oxid-Derivaten 8, 12ac und 17; aus dem 3-[(2-Nitrophenyl)thio]-4-piperidon-Derivat 22 entsteht der 2-Benzothiazolcarbaldehyd 23

    Commencement 1969 (Program and audio)

    Get PDF

    Freely mouldable cellulose

    Get PDF
    Tese de mestrado integrado. Engenharia QuĂ­mica. Faculdade de Engenharia. Universidade do Porto. 201

    Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions

    Full text link
    "This is the peer reviewed version of the following article: Simion, Andrada, Natalia Candu, Simona M. Coman, Ana Primo, Ivan Esteve-Adell, Véronique Michelet, Vasile I. Parvulescu, and Hermenegildo Garcia. 2018. Bimetallic Oriented (Au /Cu2 O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2 O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry 2018 (44). Wiley: 6185 90. doi:10.1002/ejoc.201801443, which has been published in final form at https://doi.org/10.1002/ejoc.201801443. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Michael and Henry addition reactions have been investigated using mono (Au and Cu2O) and bimetallic nanoplatelets (Au/Cu2O) grafted onto few-layers graphene (fl-G) films as heterogeneous catalysts by comparison with homogeneous NaOH and K2CO3 ones. In the presence of the heterogeneous catalysts, these reactions occurred in the absence of any extrinsic (NaOH and K2CO3) base with turnover numbers (TONs) at least four orders of magnitude higher. While the homogeneous catalysts provided TONs close to the unity for Au/Cu2O/fl-G this was of the order of 10(7). These reactions also occurred with a very good selectivity to the targeted products. These performances are in line with the basicity of these catalysts demonstrated from CO2 chemisorption measurements. The effect of the nanosize and the interaction of the nanoparticles with the graphene are also important to achieve this high activity.This work was supported by the Ministere de l' Education, de la Recherche et des Affaires Etrangeres (Brancusi Program) of France (PN-III-CEI-BIM-PM, nr. 80BM/2017), UEFISCDI (PN-III-P4-ID-PCE-2016-0146, nr. 121/2017) and COST Action CA15106 (CHAOS)Simion, A.; Candu, N.; Coman, SM.; Primo Arnau, AM.; Esteve-Adell, I.; Michelet, V.; Parvulescu, VI.... (2018). Bimetallic Oriented (Au/Cu2O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry. 2018(44):6185-6190. https://doi.org/10.1002/ejoc.201801443S61856190201844Michael, A. (1887). Ueber die Addition von Natriumacetessig- und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren. Journal für Praktische Chemie, 35(1), 349-356. doi:10.1002/prac.18870350136Michael, A. (1894). Ueber die Addition von Natriumacetessig- und Natriummalonsäureäther zu den Aethern ungesättigter Säuren. Journal für Praktische Chemie, 49(1), 20-25. doi:10.1002/prac.18940490103Tokoroyama, T. (2010). Discovery of the Michael Reaction. European Journal of Organic Chemistry, 2010(10), 2009-2016. doi:10.1002/ejoc.200901130Huebner, C. F., Sullivan, W. R., Stahmann, M. A., & Link, K. P. (1943). Studies on 4-Hydroxycoumarin. III. Dehydration of the Aldehyde Condensation Products1. Journal of the American Chemical Society, 65(12), 2292-2296. doi:10.1021/ja01252a009Mukaiyama, T. (1977). Titanium Tetrachloride in Organic Synthesis[New synthetic methods(21)]. Angewandte Chemie International Edition in English, 16(12), 817-826. doi:10.1002/anie.197708171Mukaiyama, T. (1977). Titantetrachlorid in der organischen Synthese. Angewandte Chemie, 89(12), 858-866. doi:10.1002/ange.19770891205Pansare, S. V., & Pandya, K. (2006). Simple Diamine- and Triamine-Protonic Acid Catalysts for the Enantioselective Michael Addition of Cyclic Ketones to Nitroalkenes. Journal of the American Chemical Society, 128(30), 9624-9625. doi:10.1021/ja062701nIkawa, M., Stahmann, M. A., & Link, K. P. (1944). Studies on 4-Hydroxycoumarins. V. The Condensation of α,β-Unsaturated Ketones with 4-Hydroxycoumarin1. Journal of the American Chemical Society, 66(6), 902-906. doi:10.1021/ja01234a019Iwamura, M., Gotoh, Y., Hashimoto, T., & Sakurai, R. (2005). Michael addition reactions of acetoacetates and malonates with acrylates in water under strongly alkaline conditions. Tetrahedron Letters, 46(37), 6275-6277. doi:10.1016/j.tetlet.2005.07.045Xu, X., Hu, W.-H., & Doyle, M. P. (2011). Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie International Edition, 50(28), 6392-6395. doi:10.1002/anie.201102405Xu, X., Hu, W.-H., & Doyle, M. P. (2011). Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie, 123(28), 6516-6519. doi:10.1002/ange.201102405Martinez, R., Simon, M.-O., Chevalier, R., Pautigny, C., Genet, J.-P., & Darses, S. (2009). C−C Bond Formation via C−H Bond Activation Using an in Situ-Generated Ruthenium Catalyst. Journal of the American Chemical Society, 131(22), 7887-7895. doi:10.1021/ja9017489Halland, N., Hansen, T., & Jørgensen, K. A. (2003). Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds andα,β-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant. Angewandte Chemie International Edition, 42(40), 4955-4957. doi:10.1002/anie.200352136Halland, N., Hansen, T., & Jørgensen, K. A. (2003). Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds andα,β-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant. Angewandte Chemie, 115(40), 5105-5107. doi:10.1002/ange.200352136Izquierdo, J., & Pericàs, M. A. (2015). A Recyclable, Immobilized Analogue of Benzotetramisole for Catalytic Enantioselective Domino Michael Addition/Cyclization Reactions in Batch and Flow. ACS Catalysis, 6(1), 348-356. doi:10.1021/acscatal.5b02121Nicolaou, K. C., Rhoades, D., & Kumar, S. M. (2018). Total Syntheses of Thailanstatins A–C, Spliceostatin D, and Analogues Thereof. Stereodivergent Synthesis of Tetrasubstituted Dihydro- and Tetrahydropyrans and Design, Synthesis, Biological Evaluation, and Discovery of Potent Antitumor Agents. Journal of the American Chemical Society, 140(26), 8303-8320. doi:10.1021/jacs.8b04634Ye, R., Faucher, F. F., & Somorjai, G. A. (2018). Supported iron catalysts for Michael addition reactions. Molecular Catalysis, 447, 65-71. doi:10.1016/j.mcat.2017.12.029Morita, N., Yasuda, A., Shibata, M., Ban, S., Hashimoto, Y., Okamoto, I., & Tamura, O. (2015). Gold(I)/(III)-Catalyzed Synthesis of Cyclic Ethers; Valency-Controlled Cyclization Modes. Organic Letters, 17(11), 2668-2671. doi:10.1021/acs.orglett.5b01046Li, Z., Song, L., Van Meervelt, L., Tian, G., & Van der Eycken, E. V. (2018). Cationic Gold(I)-Catalyzed Cascade Bicyclizations for Divergent Synthesis of (Spiro)polyheterocycles. ACS Catalysis, 8(7), 6388-6393. doi:10.1021/acscatal.8b01789Pagadala, R., Maddila, S., Moodley, V., van Zyl, W. E., & Jonnalagadda, S. B. (2014). An efficient method for the multicomponent synthesis of multisubstituted pyridines, a rapid procedure using Au/MgO as the catalyst. Tetrahedron Letters, 55(29), 4006-4010. doi:10.1016/j.tetlet.2014.05.089Oliver-Meseguer, J., Boronat, M., Vidal-Moya, A., Concepción, P., Rivero-Crespo, M. Á., Leyva-Pérez, A., & Corma, A. (2018). Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 140(9), 3215-3218. doi:10.1021/jacs.7b13696Leyva-Pérez, A., Oliver-Meseguer, J., Cabrero-Antonino, J. R., Rubio-Marqués, P., Serna, P., Al-Resayes, S. I., & Corma, A. (2013). Reactivity of Electron-Deficient Alkynes on Gold Nanoparticles. ACS Catalysis, 3(8), 1865-1873. doi:10.1021/cs400362cMegia-Fernandez, A., Ortega-Muñoz, M., Lopez-Jaramillo, J., Hernandez-Mateo, F., & Santoyo-Gonzalez, F. (2010). Non-Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Advanced Synthesis & Catalysis, 352(18), 3306-3320. doi:10.1002/adsc.201000530Kawabata, T., Kato, M., Mizugaki, T., Ebitani, K., & Kaneda, K. (2005). Monomeric Metal Aqua Complexes in the Interlayer Space of Montmorillonites as Strong Lewis Acid Catalysts for Heterogeneous Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 11(1), 288-297. doi:10.1002/chem.200400672Palomo, C., Oiarbide, M., & Laso, A. (2005). Enantioselective Henry Reactions under Dual Lewis Acid/Amine Catalysis Using Chiral Amino Alcohol Ligands. Angewandte Chemie International Edition, 44(25), 3881-3884. doi:10.1002/anie.200463075Palomo, C., Oiarbide, M., & Laso, A. (2005). Enantioselective Henry Reactions under Dual Lewis Acid/Amine Catalysis Using Chiral Amino Alcohol Ligands. Angewandte Chemie, 117(25), 3949-3952. doi:10.1002/ange.200463075Ganesan, S., Ganesan, A., & Kothandapani, J. (2014). Hyperbranched Polyamines: Tunable Catalysts for the Henry Reaction. Synlett, 25(13), 1847-1850. doi:10.1055/s-0034-1378534Li, H., Wang, B., & Deng, L. (2006). Enantioselective Nitroaldol Reaction of α-Ketoesters Catalyzed by Cinchona Alkaloids. Journal of the American Chemical Society, 128(3), 732-733. doi:10.1021/ja057237lGurbanov, A. V., Hazra, S., Maharramov, A. M., Zubkov, F. I., Guseinov, F. I., & Pombeiro, A. J. L. (2018). The Henry reaction catalyzed by NiII and CuII complexes bearing arylhydrazones of acetoacetanilide. Journal of Organometallic Chemistry, 869, 48-53. doi:10.1016/j.jorganchem.2018.05.025Sels, B. F., De Vos, D. E., & Jacobs, P. A. (2001). Hydrotalcite-like anionic clays in catalytic organic reactions. Catalysis Reviews, 43(4), 443-488. doi:10.1081/cr-120001809Choudary, B. M., Kantam, M. L., & Kavita, B. (2001). Synthesis of 2-nitroalkanols by MgAlO-t-Bu hydrotalcite. Journal of Molecular Catalysis A: Chemical, 169(1-2), 193-197. doi:10.1016/s1381-1169(00)00558-6Cwik, A., Fuchs, A., Hell, Z., & Clacens, J.-M. (2005). Nitroaldol-reaction of aldehydes in the presence of non-activated Mg:Al 2:1 hydrotalcite; a possible new mechanism for the formation of 2-aryl-1,3-dinitropropanes. Tetrahedron, 61(16), 4015-4021. doi:10.1016/j.tet.2005.02.055Evans, D. A., Seidel, D., Rueping, M., Lam, H. W., Shaw, J. T., & Downey, C. W. (2003). A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction. Journal of the American Chemical Society, 125(42), 12692-12693. doi:10.1021/ja0373871Risgaard, T., Gothelf, K. V., & Jørgensen, K. A. (2003). Catalytic asymmetric Henry reactions of silyl nitronates with aldehydes. Org. Biomol. Chem., 1(1), 153-156. doi:10.1039/b208859mArai, T., Watanabe, M., & Yanagisawa, A. (2007). Practical Asymmetric Henry Reaction Catalyzed by a Chiral Diamine-Cu(OAc)2Complex. Organic Letters, 9(18), 3595-3597. doi:10.1021/ol7014362Jin, W., Li, X., & Wan, B. (2011). A Highly Diastereo- and Enantioselective Copper(I)-Catalyzed Henry Reaction Using a Bis(sulfonamide)−Diamine Ligand. The Journal of Organic Chemistry, 76(2), 484-491. doi:10.1021/jo101932aWhite, J. D., & Shaw, S. (2012). A New Catalyst for the Asymmetric Henry Reaction: Synthesis of β-Nitroethanols in High Enantiomeric Excess. Organic Letters, 14(24), 6270-6273. doi:10.1021/ol3030023Jones, M. D., Cooper, C. J., Mahon, M. F., Raithby, P. R., Apperley, D., Wolowska, J., & Collison, D. (2010). Cu(II) homogeneous and heterogeneous catalysts for the asymmetric Henry reaction. Journal of Molecular Catalysis A: Chemical, 325(1-2), 8-14. doi:10.1016/j.molcata.2010.03.013Gupta, A. K., De, D., & Bharadwaj, P. K. (2017). A NbO type Cu(ii) metal–organic framework showing efficient catalytic activity in the Friedländer and Henry reactions. Dalton Transactions, 46(24), 7782-7790. doi:10.1039/c7dt01595jGupta, M., De, D., Pal, S., Pal, T. K., & Tomar, K. (2017). A porous two-dimensional Zn(ii)-coordination polymer exhibiting SC–SC transmetalation with Cu(ii): efficient heterogeneous catalysis for the Henry reaction and detection of nitro explosives. Dalton Transactions, 46(23), 7619-7627. doi:10.1039/c7dt01074ePark, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58Bottari, G., Herranz, M. Á., Wibmer, L., Volland, M., Rodríguez-Pérez, L., Guldi, D. M., … Torres, T. (2017). Chemical functionalization and characterization of graphene-based materials. Chemical Society Reviews, 46(15), 4464-4500. doi:10.1039/c7cs00229gBostwick, A., Speck, F., Seyller, T., Horn, K., Polini, M., Asgari, R., … Rotenberg, E. (2010). Observation of Plasmarons in Quasi-Freestanding Doped Graphene. Science, 328(5981), 999-1002. doi:10.1126/science.1186489Esrafili, M. D., Nematollahi, P., & Nurazar, R. (2016). Pd-embedded graphene: An efficient and highly active catalyst for oxidation of CO. Superlattices and Microstructures, 92, 60-67. doi:10.1016/j.spmi.2016.02.006Woo, H., Kim, J. W., Kim, M., Park, S., & Park, K. H. (2015). Au nanoparticles supported on magnetically separable Fe2O3–graphene oxide hybrid nanosheets for the catalytic reduction of 4-nitrophenol. RSC Advances, 5(10), 7554-7558. doi:10.1039/c4ra13989ePourjavadi, A., Doroudian, M., Abedin-Moghanaki, A., & Bennett, C. (2017). Magnetic GO-PANI decorated with Au NPs: A highly efficient and reusable catalyst for reduction of dyes and nitro aromatic compounds. Applied Organometallic Chemistry, 31(12), e3881. doi:10.1002/aoc.3881Sarvestani, M., & Azadi, R. (2016). Palladium nanoparticles deposited on a graphene-benzimidazole support as an efficient and recyclable catalyst for aqueous-phase Suzuki-Miyaura coupling reaction. Applied Organometallic Chemistry, 31(8), e3667. doi:10.1002/aoc.3667Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie, 128(2), 617-622. doi:10.1002/ange.201508908Mahdavi, H., & Rahmani, O. (2016). Polyacrylamide-g-Reduced Graphene Oxide Supported Pd Nanoparticles as a Highly Efficient Catalyst for Suzuki–Miyaura Reactions in Water. Catalysis Letters, 146(11), 2292-2305. doi:10.1007/s10562-016-1851-1Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978gPrimo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068Boruwa, J., Gogoi, N., Saikia, P. P., & Barua, N. C. (2006). Catalytic asymmetric Henry reaction. Tetrahedron: Asymmetry, 17(24), 3315-3326. doi:10.1016/j.tetasy.2006.12.005Palomo, C., Oiarbide, M., & Laso, A. (2007). Recent Advances in the Catalytic Asymmetric Nitroaldol (Henry) Reaction. European Journal of Organic Chemistry, 2007(16), 2561-2574. doi:10.1002/ejoc.200700021Akutu, K., Kabashima, H., Seki, T., & Hattori, H. (2003). Nitroaldol reaction over solid base catalysts. Applied Catalysis A: General, 247(1), 65-74. doi:10.1016/s0926-860x(03)00124-8Ballini, R., Bosica, G., Fiorini, D., Palmieri, A., & Petrini, M. (2005). Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes:  Recent Results. Chemical Reviews, 105(3), 933-972. doi:10.1021/cr040602rChoudary, B. M., Rajasekhar, C. V., Gopi Krishna, G., & Rajender Reddy, K. (2007). L‐Proline‐Catalyzed Michael Addition of Aldehydes and Unmodified Ketones to Nitro Olefins Accelerated by Et3N. Synthetic Communications, 37(1), 91-98. doi:10.1080/00397910600978218Ding, R., Katebzadeh, K., Roman, L., Bergquist, K.-E., & Lindström, U. M. (2006). Expanding the Scope of Lewis Acid Catalysis in Water:  Remarkable Ligand Acceleration of Aqueous Ytterbium Triflate Catalyzed Michael Addition Reactions. The Journal of Organic Chemistry, 71(1), 352-355. doi:10.1021/jo051540nPrimo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291Milner, S. E., Moody, T. S., & Maguire, A. R. (2012). Biocatalytic Approaches to the Henry (Nitroaldol) Reaction. European Journal of Organic Chemistry, 2012(16), 3059-3067. doi:10.1002/ejoc.201101840Ballini, R., & Palmieri, A. (2006). Synthetic Applications of Nitroalkanes Promoted by Solid Catalysis: Recent Results. Current Organic Chemistry, 10(17), 2145-2169. doi:10.2174/138527206778742632Luzzio, F. A. (2001). The Henry reaction: recent examples. Tetrahedron, 57(6), 915-945. doi:10.1016/s0040-4020(00)00965-02011 http://www.skb.se/upload/publications/pdf/TR-11-08Glorius, M., Markovits, M. A. C., & Breitkopf, C. (2018). Design of Specific Acid-Base-Properties in CeO2-ZrO2-Mixed Oxides via Templating and Au Modification. Catalysts, 8(9), 358. doi:10.3390/catal809035

    5,6-Dihydro-2H-pyran-3(4H)-on als Baustein zur Synthese pyrananellierter Heterocyclen

    Get PDF
    Während 5,6-Dihydro-2H-pyran-3(4H)-on (3) sich mit ortho-substituierten Phenylcarbonylverbindungen nur in Einzelfällen regioselektiv zu pyrananellierten Heterocyclen umsetzt - z. B. zum Pyrano[2,3-b]chinolin 7c -, gelingt das besser mit dem aus 3 hergestellten Enamin 15d, dem Silylenolether 18 und dem daraus gewonnenen Lithiumenolat 14. Diese Pyranderivate mit 2,3-oder 3,4-Doppelbindungen eignen sich zur gezielten Darstellung von 2- oder 4-substituierten 3-Pyranonen - z.B. 2, 21a, 21b, 23a-c, 26a-c, 31a-c, 32, sowie 35a-c - und von Pyrano[3,2-b]- oder -[3,4-b]chinolinen, -chinolonen, -chromonen und -thiochromonen 6a, 30a-c und 38a-d

    Vitrimers based on vinylogous acyl exchange reactions

    Get PDF
    • …
    corecore