211 research outputs found

    Multi-sensor fusion for human-robot interaction in crowded environments

    Get PDF
    For challenges associated with the ageing population, robot assistants are becoming a promising solution. Human-Robot Interaction (HRI) allows a robot to understand the intention of humans in an environment and react accordingly. This thesis proposes HRI techniques to facilitate the transition of robots from lab-based research to real-world environments. The HRI aspects addressed in this thesis are illustrated in the following scenario: an elderly person, engaged in conversation with friends, wishes to attract a robot's attention. This composite task consists of many problems. The robot must detect and track the subject in a crowded environment. To engage with the user, it must track their hand movement. Knowledge of the subject's gaze would ensure that the robot doesn't react to the wrong person. Understanding the subject's group participation would enable the robot to respect existing human-human interaction. Many existing solutions to these problems are too constrained for natural HRI in crowded environments. Some require initial calibration or static backgrounds. Others deal poorly with occlusions, illumination changes, or real-time operation requirements. This work proposes algorithms that fuse multiple sensors to remove these restrictions and increase the accuracy over the state-of-the-art. The main contributions of this thesis are: A hand and body detection method, with a probabilistic algorithm for their real-time association when multiple users and hands are detected in crowded environments; An RGB-D sensor-fusion hand tracker, which increases position and velocity accuracy by combining a depth-image based hand detector with Monte-Carlo updates using colour images; A sensor-fusion gaze estimation system, combining IR and depth cameras on a mobile robot to give better accuracy than traditional visual methods, without the constraints of traditional IR techniques; A group detection method, based on sociological concepts of static and dynamic interactions, which incorporates real-time gaze estimates to enhance detection accuracy.Open Acces

    On the 3D point cloud for human-pose estimation

    Get PDF
    This thesis aims at investigating methodologies for estimating a human pose from a 3D point cloud that is captured by a static depth sensor. Human-pose estimation (HPE) is important for a range of applications, such as human-robot interaction, healthcare, surveillance, and so forth. Yet, HPE is challenging because of the uncertainty in sensor measurements and the complexity of human poses. In this research, we focus on addressing challenges related to two crucial components in the estimation process, namely, human-pose feature extraction and human-pose modeling. In feature extraction, the main challenge involves reducing feature ambiguity. We propose a 3D-point-cloud feature called viewpoint and shape feature histogram (VISH) to reduce feature ambiguity by capturing geometric properties of the 3D point cloud of a human. The feature extraction consists of three steps: 3D-point-cloud pre-processing, hierarchical structuring, and feature extraction. In the pre-processing step, 3D points corresponding to a human are extracted and outliers from the environment are removed to retain the 3D points of interest. This step is important because it allows us to reduce the number of 3D points by keeping only those points that correspond to the human body for further processing. In the hierarchical structuring, the pre-processed 3D point cloud is partitioned and replicated into a tree structure as nodes. Viewpoint feature histogram (VFH) and shape features are extracted from each node in the tree to provide a descriptor to represent each node. As the features are obtained based on histograms, coarse-level details are highlighted in large regions and fine-level details are highlighted in small regions. Therefore, the features from the point cloud in the tree can capture coarse level to fine level information to reduce feature ambiguity. In human-pose modeling, the main challenges involve reducing the dimensionality of human-pose space and designing appropriate factors that represent the underlying probability distributions for estimating human poses. To reduce the dimensionality, we propose a non-parametric action-mixture model (AMM). It represents high-dimensional human-pose space using low-dimensional manifolds in searching human poses. In each manifold, a probability distribution is estimated based on feature similarity. The distributions in the manifolds are then redistributed according to the stationary distribution of a Markov chain that models the frequency of human actions. After the redistribution, the manifolds are combined according to a probability distribution determined by action classification. Experiments were conducted using VISH features as input to the AMM. The results showed that the overall error and standard deviation of the AMM were reduced by about 7.9% and 7.1%, respectively, compared with a model without action classification. To design appropriate factors, we consider the AMM as a Bayesian network and propose a mapping that converts the Bayesian network to a neural network called NN-AMM. The proposed mapping consists of two steps: structure identification and parameter learning. In structure identification, we have developed a bottom-up approach to build a neural network while preserving the Bayesian-network structure. In parameter learning, we have created a part-based approach to learn synaptic weights by decomposing a neural network into parts. Based on the concept of distributed representation, the NN-AMM is further modified into a scalable neural network called NND-AMM. A neural-network-based system is then built by using VISH features to represent 3D-point-cloud input and the NND-AMM to estimate 3D human poses. The results showed that the proposed mapping can be utilized to design AMM factors automatically. The NND-AMM can provide more accurate human-pose estimates with fewer hidden neurons than both the AMM and NN-AMM can. Both the NN-AMM and NND-AMM can adapt to different types of input, showing the advantage of using neural networks to design factors

    Processing and tracking human motions using optical, inertial, and depth sensors

    Get PDF
    The processing of human motion data constitutes an important strand of research with many applications in computer animation, sport science and medicine. Currently, there exist various systems for recording human motion data that employ sensors of different modalities such as optical, inertial and depth sensors. Each of these sensor modalities have intrinsic advantages and disadvantages that make them suitable for capturing specific aspects of human motions as, for example, the overall course of a motion, the shape of the human body, or the kinematic properties of motions. In this thesis, we contribute with algorithms that exploit the respective strengths of these different modalities for comparing, classifying, and tracking human motion in various scenarios. First, we show how our proposed techniques can be employed, e.g., for real-time motion reconstruction using efficient cross-modal retrieval techniques. Then, we discuss a practical application of inertial sensors-based features to the classification of trampoline motions. As a further contribution, we elaborate on estimating the human body shape from depth data with applications to personalized motion tracking. Finally, we introduce methods to stabilize a depth tracker in challenging situations such as in presence of occlusions. Here, we exploit the availability of complementary inertial-based sensor information.Die Verarbeitung menschlicher Bewegungsdaten stellt einen wichtigen Bereich der Forschung dar mit vielen Anwendungsmöglichkeiten in Computer-Animation, Sportwissenschaften und Medizin. Zurzeit existieren diverse Systeme für die Aufnahme von menschlichen Bewegungsdaten, welche unterschiedliche Sensor-Modalitäten, wie optische Sensoren, Trägheits- oder Tiefen-Sensoren, einsetzen. Alle diese Sensor-Modalitäten haben intrinsische Vor- und Nachteile, welche sie befähigen, spezifische Aspekte menschlicher Bewegungen, wie zum Beispiel den groben Verlauf von Bewegungen, die Form des menschlichen Körpers oder die kinetischen Eigenschaften von Bewegungen, einzufangen. In dieser Arbeit tragen wir mit Algorithmen bei, welche die jeweiligen Vorteile dieser verschiedenen Modalitäten ausnutzen, um menschliche Bewegungen in unterschiedlichen Szenarien zu vergleichen, zu klassifizieren und zu verfolgen. Zuerst zeigen wir, wie unsere vorgeschlagenen Techniken angewandt werden können, um z.B. in Echtzeit Bewegungen mit Hilfe von cross-modalem Suchen zu rekonstruieren. Dann diskutieren wir eine praktische Anwendung von Trägheitssensor-basierten Eigenschaften für die Klassifikation von Trampolinbewegungen. Als einen weiteren Beitrag gehen wir näher auf die Bestimmung der menschlichen Körperform aus Tiefen-Daten mit Anwendung in personalisierter Bewegungsverfolgung ein. Zuletzt führen wir Methoden ein, um einen Tiefen-Tracker in anspruchsvollen Situationen, wie z.B. in Anwesenheit von Verdeckungen, zu stabilisieren. Hier nutzen wir die Verfügbarkeit von komplementären, Trägheits-basierten Sensor-Informationen aus

    HIGH QUALITY HUMAN 3D BODY MODELING, TRACKING AND APPLICATION

    Get PDF
    Geometric reconstruction of dynamic objects is a fundamental task of computer vision and graphics, and modeling human body of high fidelity is considered to be a core of this problem. Traditional human shape and motion capture techniques require an array of surrounding cameras or subjects wear reflective markers, resulting in a limitation of working space and portability. In this dissertation, a complete process is designed from geometric modeling detailed 3D human full body and capturing shape dynamics over time using a flexible setup to guiding clothes/person re-targeting with such data-driven models. As the mechanical movement of human body can be considered as an articulate motion, which is easy to guide the skin animation but has difficulties in the reverse process to find parameters from images without manual intervention, we present a novel parametric model, GMM-BlendSCAPE, jointly taking both linear skinning model and the prior art of BlendSCAPE (Blend Shape Completion and Animation for PEople) into consideration and develop a Gaussian Mixture Model (GMM) to infer both body shape and pose from incomplete observations. We show the increased accuracy of joints and skin surface estimation using our model compared to the skeleton based motion tracking. To model the detailed body, we start with capturing high-quality partial 3D scans by using a single-view commercial depth camera. Based on GMM-BlendSCAPE, we can then reconstruct multiple complete static models of large pose difference via our novel non-rigid registration algorithm. With vertex correspondences established, these models can be further converted into a personalized drivable template and used for robust pose tracking in a similar GMM framework. Moreover, we design a general purpose real-time non-rigid deformation algorithm to accelerate this registration. Last but not least, we demonstrate a novel virtual clothes try-on application based on our personalized model utilizing both image and depth cues to synthesize and re-target clothes for single-view videos of different people

    MONOCULAR POSE ESTIMATION AND SHAPE RECONSTRUCTION OF QUASI-ARTICULATED OBJECTS WITH CONSUMER DEPTH CAMERA

    Get PDF
    Quasi-articulated objects, such as human beings, are among the most commonly seen objects in our daily lives. Extensive research have been dedicated to 3D shape reconstruction and motion analysis for this type of objects for decades. A major motivation is their wide applications, such as in entertainment, surveillance and health care. Most of existing studies relied on one or more regular video cameras. In recent years, commodity depth sensors have become more and more widely available. The geometric measurements delivered by the depth sensors provide significantly valuable information for these tasks. In this dissertation, we propose three algorithms for monocular pose estimation and shape reconstruction of quasi-articulated objects using a single commodity depth sensor. These three algorithms achieve shape reconstruction with increasing levels of granularity and personalization. We then further develop a method for highly detailed shape reconstruction based on our pose estimation techniques. Our first algorithm takes advantage of a motion database acquired with an active marker-based motion capture system. This method combines pose detection through nearest neighbor search with pose refinement via non-rigid point cloud registration. It is capable of accommodating different body sizes and achieves more than twice higher accuracy compared to a previous state of the art on a publicly available dataset. The above algorithm performs frame by frame estimation and therefore is less prone to tracking failure. Nonetheless, it does not guarantee temporal consistent of the both the skeletal structure and the shape and could be problematic for some applications. To address this problem, we develop a real-time model-based approach for quasi-articulated pose and 3D shape estimation based on Iterative Closest Point (ICP) principal with several novel constraints that are critical for monocular scenario. In this algorithm, we further propose a novel method for automatic body size estimation that enables its capability to accommodate different subjects. Due to the local search nature, the ICP-based method could be trapped to local minima in the case of some complex and fast motions. To address this issue, we explore the potential of using statistical model for soft point correspondences association. Towards this end, we propose a unified framework based on Gaussian Mixture Model for joint pose and shape estimation of quasi-articulated objects. This method achieves state-of-the-art performance on various publicly available datasets. Based on our pose estimation techniques, we then develop a novel framework that achieves highly detailed shape reconstruction by only requiring the user to move naturally in front of a single depth sensor. Our experiments demonstrate reconstructed shapes with rich geometric details for various subjects with different apparels. Last but not the least, we explore the applicability of our method on two real-world applications. First of all, we combine our ICP-base method with cloth simulation techniques for Virtual Try-on. Our system delivers the first promising 3D-based virtual clothing system. Secondly, we explore the possibility to extend our pose estimation algorithms to assist physical therapist to identify their patients’ movement dysfunctions that are related to injuries. Our preliminary experiments have demonstrated promising results by comparison with the gold standard active marker-based commercial system. Throughout the dissertation, we develop various state-of-the-art algorithms for pose estimation and shape reconstruction of quasi-articulated objects by leveraging the geometric information from depth sensors. We also demonstrate their great potentials for different real-world applications

    Rekonstruktion, Analyse und Editierung dynamisch deformierter 3D-Oberflächen

    Get PDF
    Dynamically deforming 3D surfaces play a major role in computer graphics. However, producing time-varying dynamic geometry at ever increasing detail is a time-consuming and costly process, and so a recent trend is to capture geometry data directly from the real world. In the first part of this thesis, I propose novel approaches for this research area. These approaches capture dense dynamic 3D surfaces from multi-camera systems in a particularly robust and accurate way. This provides highly realistic dynamic surface models for phenomena like moving garments and bulging muscles. However, re-using, editing, or otherwise analyzing dynamic 3D surface data is not yet conveniently possible. To close this gap, the second part of this dissertation develops novel data-driven modeling and animation approaches. I first show a supervised data-driven approach for modeling human muscle deformations that scales to huge datasets and provides fine-scale, anatomically realistic deformations at high quality not attainable by previous methods. I then extend data-driven modeling to the unsupervised case, providing editing tools for a wider set of input data ranging from facial performance capture and full-body motion to muscle and cloth deformation. To this end, I introduce the concepts of sparsity and locality within a mathematical optimization framework. I also explore these concepts for constructing shape-aware functions that are useful for static geometry processing, registration, and localized editing.Dynamisch deformierbare 3D-Oberflächen spielen in der Computergrafik eine zentrale Rolle. Die Erstellung der für Computergrafik-Anwendungen benötigten, hochaufgelösten und zeitlich veränderlichen Oberflächengeometrien ist allerdings äußerst arbeitsintensiv. Aus dieser Problematik heraus hat sich der Trend entwickelt, Oberflächendaten direkt aus Aufnahmen der echten Welt zu erfassen. Dazu nötige 3D-Rekonstruktionsverfahren werden im ersten Teil der Arbeit entwickelt. Die vorgestellten, neuartigen Verfahren erlauben die Erfassung dynamischer 3D-Oberflächen aus Mehrkamera-Aufnahmen bei hoher Verlässlichkeit und Präzision. Auf diese Weise können detaillierte Oberflächenmodelle von Phänomenen wie in Bewegung befindliche Kleidung oder sich anspannende Muskeln erfasst werden. Aber auch die Wiederverwendung, Bearbeitung und Analyse derlei gewonnener 3D-Oberflächendaten ist aktuell noch nicht auf eine einfache Art und Weise möglich. Um diese Lücke zu schließen beschäftigt sich der zweite Teil der Arbeit mit der datengetriebenen Modellierung und Animation. Zunächst wird ein Ansatz für das überwachte Lernen menschlicher Muskel-Deformationen vorgestellt. Dieses neuartige Verfahren ermöglicht eine datengetriebene Modellierung mit besonders umfangreichen Datensätzen und liefert anatomisch-realistische Deformationseffekte. Es übertrifft damit die Genauigkeit früherer Methoden. Im nächsten Teil beschäftigt sich die Dissertation mit dem unüberwachten Lernen aus 3D-Oberflächendaten. Es werden neuartige Werkzeuge vorgestellt, die eine weitreichende Menge an Eingabedaten verarbeiten können, von aufgenommenen Gesichtsanimationen über Ganzkörperbewegungen bis hin zu Muskel- und Kleidungsdeformationen. Um diese Anwendungsbreite zu erreichen stützt sich die Arbeit auf die allgemeinen Konzepte der Spärlichkeit und Lokalität und bettet diese in einen mathematischen Optimierungsansatz ein. Abschließend zeigt die vorliegende Arbeit, wie diese Konzepte auch für die Konstruktion von oberflächen-adaptiven Basisfunktionen übertragen werden können. Dadurch können Anwendungen für die Verarbeitung, Registrierung und Bearbeitung statischer Oberflächenmodelle erschlossen werden

    Synergistic Visualization And Quantitative Analysis Of Volumetric Medical Images

    Get PDF
    The medical diagnosis process starts with an interview with the patient, and continues with the physical exam. In practice, the medical professional may require additional screenings to precisely diagnose. Medical imaging is one of the most frequently used non-invasive screening methods to acquire insight of human body. Medical imaging is not only essential for accurate diagnosis, but also it can enable early prevention. Medical data visualization refers to projecting the medical data into a human understandable format at mediums such as 2D or head-mounted displays without causing any interpretation which may lead to clinical intervention. In contrast to the medical visualization, quantification refers to extracting the information in the medical scan to enable the clinicians to make fast and accurate decisions. Despite the extraordinary process both in medical visualization and quantitative radiology, efforts to improve these two complementary fields are often performed independently and synergistic combination is under-studied. Existing image-based software platforms mostly fail to be used in routine clinics due to lack of a unified strategy that guides clinicians both visually and quan- titatively. Hence, there is an urgent need for a bridge connecting the medical visualization and automatic quantification algorithms in the same software platform. In this thesis, we aim to fill this research gap by visualizing medical images interactively from anywhere, and performing a fast, accurate and fully-automatic quantification of the medical imaging data. To end this, we propose several innovative and novel methods. Specifically, we solve the following sub-problems of the ul- timate goal: (1) direct web-based out-of-core volume rendering, (2) robust, accurate, and efficient learning based algorithms to segment highly pathological medical data, (3) automatic landmark- ing for aiding diagnosis and surgical planning and (4) novel artificial intelligence algorithms to determine the sufficient and necessary data to derive large-scale problems

    Robust Methods for Visual Tracking and Model Alignment

    Get PDF
    The ubiquitous presence of cameras and camera networks needs the development of robust visual analytics algorithms. As the building block of many video visual surveillance tasks, a robust visual tracking algorithm plays an important role in achieving the goal of automatic and robust surveillance. In practice, it is critical to know when and where the tracking algorithm fails so that remedial measures can be taken to resume tracking. We propose a novel performance evaluation strategy for tracking systems using a time-reversed Markov chain. We also present a novel bidirectional tracker to achieve better robustness. Instead of looking only forward in the time domain, we incorporate both forward and backward processing of video frames using a time-reversibility constraint. When the objects of interest in surveillance applications have relatively stable structures, the parameterized shape model of objects can be usually built or learned from sample images, which allows us to perform more accurate tracking. We present a machine learning method to learn a scoring function without local extrema to guide the gradient descent/accent algorithm and find the optimal parameters of the shape model. These algorithms greatly improve the robustness of video analysis systems in practice

    Human body analysis using depth data

    Get PDF
    Human body analysis is one of the broadest areas within the computer vision field. Researchers have put a strong effort in the human body analysis area, specially over the last decade, due to the technological improvements in both video cameras and processing power. Human body analysis covers topics such as person detection and segmentation, human motion tracking or action and behavior recognition. Even if human beings perform all these tasks naturally, they build-up a challenging problem from a computer vision point of view. Adverse situations such as viewing perspective, clutter and occlusions, lighting conditions or variability of behavior amongst persons may turn human body analysis into an arduous task. In the computer vision field, the evolution of research works is usually tightly related to the technological progress of camera sensors and computer processing power. Traditional human body analysis methods are based on color cameras. Thus, the information is extracted from the raw color data, strongly limiting the proposals. An interesting quality leap was achieved by introducing the multiview concept. That is to say, having multiple color cameras recording a single scene at the same time. With multiview approaches, 3D information is available by means of stereo matching algorithms. The fact of having 3D information is a key aspect in human motion analysis, since the human body moves in a three-dimensional space. Thus, problems such as occlusion and clutter may be overcome with 3D information. The appearance of commercial depth cameras has supposed a second leap in the human body analysis field. While traditional multiview approaches required a cumbersome and expensive setup, as well as a fine camera calibration; novel depth cameras directly provide 3D information with a single camera sensor. Furthermore, depth cameras may be rapidly installed in a wide range of situations, enlarging the range of applications with respect to multiview approaches. Moreover, since depth cameras are based on infra-red light, they do not suffer from illumination variations. In this thesis, we focus on the study of depth data applied to the human body analysis problem. We propose novel ways of describing depth data through specific descriptors, so that they emphasize helpful characteristics of the scene for further body analysis. These descriptors exploit the special 3D structure of depth data to outperform generalist 3D descriptors or color based ones. We also study the problem of person detection, proposing a highly robust and fast method to detect heads. Such method is extended to a hand tracker, which is used throughout the thesis as a helpful tool to enable further research. In the remainder of this dissertation, we focus on the hand analysis problem as a subarea of human body analysis. Given the recent appearance of depth cameras, there is a lack of public datasets. We contribute with a dataset for hand gesture recognition and fingertip localization using depth data. This dataset acts as a starting point of two proposals for hand gesture recognition and fingertip localization based on classification techniques. In these methods, we also exploit the above mentioned descriptor proposals to finely adapt to the nature of depth data.%, and enhance the results in front of traditional color-based methods.L’anàlisi del cos humà és una de les àrees més àmplies del camp de la visió per computador. Els investigadors han posat un gran esforç en el camp de l’anàlisi del cos humà, sobretot durant la darrera dècada, degut als grans avenços tecnològics, tant pel que fa a les càmeres com a la potencia de càlcul. L’anàlisi del cos humà engloba varis temes com la detecció i segmentació de persones, el seguiment del moviment del cos, o el reconeixement d'accions. Tot i que els essers humans duen a terme aquestes tasques d'una manera natural, es converteixen en un difícil problema quan s'ataca des de l’òptica de la visió per computador. Situacions adverses, com poden ser la perspectiva del punt de vista, les oclusions, les condicions d’il•luminació o la variabilitat de comportament entre persones, converteixen l’anàlisi del cos humà en una tasca complicada. En el camp de la visió per computador, l’evolució de la recerca va sovint lligada al progrés tecnològic, tant dels sensors com de la potencia de càlcul dels ordinadors. Els mètodes tradicionals d’anàlisi del cos humà estan basats en càmeres de color. Això limita molt els enfocaments, ja que la informació disponible prové únicament de les dades de color. El concepte multivista va suposar salt de qualitat important. En els enfocaments multivista es tenen múltiples càmeres gravant una mateixa escena simultàniament, permetent utilitzar informació 3D gràcies a algorismes de combinació estèreo. El fet de disposar d’informació 3D es un punt clau, ja que el cos humà es mou en un espai tri-dimensional. Això doncs, problemes com les oclusions es poden apaivagar si es disposa de informació 3D. L’aparició de les càmeres de profunditat comercials ha suposat un segon salt en el camp de l’anàlisi del cos humà. Mentre els mètodes multivista tradicionals requereixen un muntatge pesat i car, i una celebració precisa de totes les càmeres; les noves càmeres de profunditat ofereixen informació 3D de forma directa amb un sol sensor. Aquestes càmeres es poden instal•lar ràpidament en una gran varietat d'entorns, ampliant enormement l'espectre d'aplicacions, que era molt reduït amb enfocaments multivista. A més a més, com que les càmeres de profunditat estan basades en llum infraroja, no pateixen problemes relacionats amb canvis d’il•luminació. En aquesta tesi, ens centrem en l'estudi de la informació que ofereixen les càmeres de profunditat, i la seva aplicació al problema d’anàlisi del cos humà. Proposem noves vies per descriure les dades de profunditat mitjançant descriptors específics, capaços d'emfatitzar característiques de l'escena que seran útils de cara a una posterior anàlisi del cos humà. Aquests descriptors exploten l'estructura 3D de les dades de profunditat per superar descriptors 3D generalistes o basats en color. També estudiem el problema de detecció de persones, proposant un mètode per detectar caps robust i ràpid. Ampliem aquest mètode per obtenir un algorisme de seguiment de mans que ha estat utilitzat al llarg de la tesi. En la part final del document, ens centrem en l’anàlisi de les mans com a subàrea de l’anàlisi del cos humà. Degut a la recent aparició de les càmeres de profunditat, hi ha una manca de bases de dades públiques. Contribuïm amb una base de dades pensada per la localització de dits i el reconeixement de gestos utilitzant dades de profunditat. Aquesta base de dades és el punt de partida de dues contribucions sobre localització de dits i reconeixement de gestos basades en tècniques de classificació. En aquests mètodes, també explotem les ja mencionades propostes de descriptors per millor adaptar-nos a la naturalesa de les dades de profunditat
    • …
    corecore